Open In App

numpy.fabs() in Python

Last Updated : 28 Nov, 2018
Comments
Improve
Suggest changes
Like Article
Like
Report
numpy.fabs() function is used to compute the absolute values element-wise. This function returns the absolute values (positive magnitude) of the data in arr. It always return absolute values in floats.
Syntax : numpy.fabs(arr, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, ufunc ‘fabs') Parameters : arr : [array_like] The array of numbers for which the absolute values are required. out : [ndarray, optional] A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. **kwargs : Allows to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional] True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone. Return : [ndarray or scalar] The absolute values of arr, the returned values are always floats.
Code #1 : Working Python
# Python program explaining
# fabs() function

import numpy as geek
in_num = 10
print ("Input  number : ", in_num)
  
out_num = geek.fabs(in_num) 
print ("Absolute value  of positive  input number : ", out_num) 
Output :
Input  number :  10
Absolute value  of positive  input number :  10.0
  Code #2 : Python
# Python program explaining
# fabs() function

import numpy as geek
in_num = -9.0
print ("Input  number : ", in_num)
  
out_num = geek.fabs(in_num) 
print ("Absolute value  of negative input number : ", out_num) 
Output :
Input  number :  -9.0
Absolute value  of negative input number :  9.0
  Code #3 : Python
# Python program explaining
# fabs() function

import numpy as geek

in_arr = [2, 0, -2, -5]
print ("Input array : ", in_arr)
  
out_arr = geek.fabs(in_arr) 
print ("Output absolute array : ", out_arr) 
Output :
Input array :  [2, 0, -2, -5]
Output absolute array :  [ 2.  0.  2.  5.]

Next Article

Similar Reads