Open In App

numpy.bincount() in Python

Last Updated : 17 Nov, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
In an array of +ve integers, the numpy.bincount() method counts the occurrence of each element. Each bin value is the occurrence of its index. One can also set the bin size accordingly. Syntax :
numpy.bincount(arr, weights = None, min_len = 0)
Parameters :
arr     : [array_like, 1D]Input array, having positive numbers
weights : [array_like, optional]same shape as that of arr
min_len : Minimum number of bins we want in the output array
Return :
Output array with no. of occurrence of index value of bin in input - arr. 
Output array, by default is of the length max element of arr + 1. 
Here size of the output array would be max(input_arr)+1.
Code 1 : Working of bincount() in NumPy Python3
# Python Program explaining 
# working of numpy.bincount() method

import numpy as geek

# 1D array with +ve integers
array1 = [1, 6, 1, 1, 1, 2, 2]
bin = geek.bincount(array1)
print("Bincount output  : \n ", bin)
print("size of bin : ", len(bin), "\n")

array2 = [1, 5, 5, 5, 4, 5, 5, 2, 2, 2]
bin = geek.bincount(array2)
print("Bincount output  : \n ", bin)
print("size of bin : ", len(bin), "\n")

# using min_length attribute
length = 10
bin1 = geek.bincount(array2, None, length)
print("Bincount output  : \n ", bin1)

print("size of bin : ", len(bin1), "\n")
Output :
Bincount output  : 
  [0 4 2 0 0 0 1]
size of bin :  7 

Bincount output  : 
  [0 1 3 0 1 5]
size of bin :  6 

Bincount output  : 
  [0 1 3 0 1 5 0 0 0 0]
size of bin :  10 

Code 2 : We can perform addition as per element with bincount() weight Python3
# Python Program explaining 
# working of numpy.bincount() method

import numpy as geek

# 1D array with +ve integers
array2 = [10, 11, 4, 6, 2, 1, 9]
array1 = [1, 3, 1, 3, 1, 2, 2]

# array2 : weight
bin = geek.bincount(array1, array2)
print("Summation element-wise : \n", bin)

#index 0 : 0
#index 1 : 10 + 4 + 2 = 16
#index 2 : 1 + 9 = 10
#index 3 : 11 + 6 = 17
Output :
Summation element-wise : 
 [  0.  16.  10.  17.]
References : https://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html#numpy.bincount .

Next Article

Similar Reads