Open In App

N digit numbers divisible by 5 formed from the M digits

Last Updated : 11 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Given M unique digits and a number N. The task is to find the number of N-digit numbers which can be formed from the given M digits, which are divisible by 5 and none of the digits is repeated.

Note: If it is not possible to form a N digit number from the given digits, print -1.

Examples: 

Input : N = 3, M = 6, digits[] = {2, 3, 5, 6, 7, 9} 
Output : 20
Input : N = 5, M = 6, digits[] = {0, 3, 5, 6, 7, 9} 
Output : 240

For a number to be divisible by 5, the only condition is that the digit at the unit place in the number must be either 0 or 5.
So, to find the count of numbers that are divisible by 5 and can be formed from the given digits, do the following:  

  • Check if the given digits contain both 0 and 5.
  • If the given digits contain both 0 and 5, then the unit place can be filled in 2 ways otherwise the unit place can be filled in 1 way.
  • Now, the tens place can now be filled by any of the remaining M-1 digits. So, there are (M-1) ways of filling the tens place.
  • Similarly, the hundred's place can now be filled by any of the remaining (M-2) digits and so on.

Therefore, if the given digits have both 0 and 5:  

Required number of numbers = 2 * (M-1)* (M-2)...N-times. 

Otherwise, if the given digits have either one of 0 and 5 and not both:  

Required number of numbers = 1 * (M-1)* (M-2)...N-times. 

Below is the implementation of the above approach. 

C++
// CPP program to find the count of all
// possible N digit numbers which are
// divisible by 5 formed from M digits
#include <bits/stdc++.h>
using namespace std;

// Function to find the count of all
// possible N digit numbers which are
// divisible by 5 formed from M digits
int numbers(int n, int arr[], int m)
{
    int isZero = 0, isFive = 0;
    int result = 0;

    // If it is not possible to form
    // n digit number from the given
    // m digits without repetition
    if (m < n) {
        return -1;
    }

    for (int i = 0; i < m; i++) {
        if (arr[i] == 0)
            isZero = 1;

        if (arr[i] == 5)
            isFive = 1;
    }

    // If both zero and five exists
    if (isZero && isFive) {
        result = 2;

        // Remaining N-1 iterations
        for (int i = 0; i < n - 1; i++) {
            result = result * (--m);
        }
    }
    else if (isZero || isFive) {
        result = 1;

        // Remaining N-1 iterations
        for (int i = 0; i < n - 1; i++) {
            result = result * (--m);
        }
    }
    else
        result = -1;

    return result;
}

// Driver code
int main()
{
    int n = 3, m = 6;

    int arr[] = { 2, 3, 5, 6, 7, 9 };

    cout << numbers(n, arr, m);

    return 0;
}
Java
// Java program to find the count of all 
// possible N digit numbers which are 
// divisible by 5 formed from M digits 

class GFG {

// Function to find the count of all 
// possible N digit numbers which are 
// divisible by 5 formed from M digits 
    static int numbers(int n, int arr[], int m) {
        int isZero = 0, isFive = 0;
        int result = 0;

        // If it is not possible to form 
        // n digit number from the given 
        // m digits without repetition 
        if (m < n) {
            return -1;
        }

        for (int i = 0; i < m; i++) {
            if (arr[i] == 0) {
                isZero = 1;
            }

            if (arr[i] == 5) {
                isFive = 1;
            }
        }

        // If both zero and five exists 
        if (isZero == 1 && isFive == 1) {
            result = 2;

            // Remaining N-1 iterations 
            for (int i = 0; i < n - 1; i++) {
                result = result * (--m);
            }
        } else if (isZero == 1 || isFive == 1) {
            result = 1;

            // Remaining N-1 iterations 
            for (int i = 0; i < n - 1; i++) {
                result = result * (--m);
            }
        } else {
            result = -1;
        }

        return result;
    }

// Driver code 
    public static void main(String[] args) {
        int n = 3, m = 6;

        int arr[] = {2, 3, 5, 6, 7, 9};
        System.out.println(numbers(n, arr, m));

    }
}
// This code is contributed by RAJPUT-JI
Python 3
# Python 3 program to find the count 
# of all possible N digit numbers which 
# are divisible by 5 formed from M digits

# Function to find the count of all
# possible N digit numbers which are
# divisible by 5 formed from M digits
def numbers(n, arr, m):

    isZero = 0
    isFive = 0
    result = 0

    # If it is not possible to form
    # n digit number from the given
    # m digits without repetition
    if (m < n) :
        return -1

    for i in range(m) :
        if (arr[i] == 0):
            isZero = 1

        if (arr[i] == 5):
            isFive = 1

    # If both zero and five exists
    if (isZero and isFive) :
        result = 2

        # Remaining N-1 iterations
        for i in range( n - 1):
            m -= 1
            result = result * (m)

    elif (isZero or isFive) :
        result = 1

        # Remaining N-1 iterations
        for i in range(n - 1) :
            m -= 1
            result = result * (m)
    else:
        result = -1

    return result

# Driver code
if __name__ == "__main__":
    n = 3
    m = 6

    arr = [ 2, 3, 5, 6, 7, 9]

    print(numbers(n, arr, m))

# This code is contributed by ChitraNayal
C#
// C# program to find the count of all 
// possible N digit numbers which are 
// divisible by 5 formed from M digits 
using System;
public class GFG {

// Function to find the count of all 
// possible N digit numbers which are 
// divisible by 5 formed from M digits 
    static int numbers(int n, int []arr, int m) {
        int isZero = 0, isFive = 0;
        int result = 0;

        // If it is not possible to form 
        // n digit number from the given 
        // m digits without repetition 
        if (m < n) {
            return -1;
        }

        for (int i = 0; i < m; i++) {
            if (arr[i] == 0) {
                isZero = 1;
            }

            if (arr[i] == 5) {
                isFive = 1;
            }
        }

        // If both zero and five exists 
        if (isZero == 1 && isFive == 1) {
            result = 2;

            // Remaining N-1 iterations 
            for (int i = 0; i < n - 1; i++) {
                result = result * (--m);
            }
        } else if (isZero == 1 || isFive == 1) {
            result = 1;

            // Remaining N-1 iterations 
            for (int i = 0; i < n - 1; i++) {
                result = result * (--m);
            }
        } else {
            result = -1;
        }

        return result;
    }

// Driver code 
    public static void Main() {
        int n = 3, m = 6;

        int []arr = {2, 3, 5, 6, 7, 9};
        Console.WriteLine(numbers(n, arr, m));

    }
}
// This code is contributed by RAJPUT-JI
PHP
<?php
// PHP program to find the count of all 
// possible N digit numbers which are 
// divisible by 5 formed from M digits 

// Function to find the count of all 
// possible N digit numbers which are 
// divisible by 5 formed from M digits 
function numbers($n, $arr, $m) 
{ 
    $isZero = 0;
    $isFive = 0; 
    $result = 0; 

    // If it is not possible to form 
    // n digit number from the given 
    // m digits without repetition 
    if ($m < $n) 
    { 
        return -1; 
    } 

    for ($i = 0; $i < $m; $i++)
    { 
        if ($arr[$i] == 0) 
            $isZero = 1; 

        if ($arr[$i] == 5) 
            $isFive = 1; 
    } 

    // If both zero and five exists 
    if ($isZero && $isFive) 
    { 
        $result = 2; 

        // Remaining N-1 iterations 
        for ($i = 0; $i < $n - 1; $i++)
        { 
            $result = $result * (--$m); 
        } 
    } 
    else if ($isZero || $isFive)
    { 
        $result = 1; 

        // Remaining N-1 iterations 
        for ($i = 0; $i < $n - 1; $i++)
        { 
            $result = $result * (--$m); 
        } 
    } 
    else
        $result = -1; 

    return $result; 
} 

// Driver code 
$n = 3;
$m = 6; 

$arr = array( 2, 3, 5, 6, 7, 9 ); 

echo numbers($n, $arr, $m); 

// This code is contributed by jit_t
?>
JavaScript
<script>
    // Javascript program to find the count of all 
    // possible N digit numbers which are 
    // divisible by 5 formed from M digits 
    
    // Function to find the count of all 
    // possible N digit numbers which are 
    // divisible by 5 formed from M digits 
    function numbers(n, arr, m) {
        let isZero = 0, isFive = 0;
        let result = 0;
  
        // If it is not possible to form 
        // n digit number from the given 
        // m digits without repetition 
        if (m < n) {
            return -1;
        }
  
        for (let i = 0; i < m; i++) {
            if (arr[i] == 0) {
                isZero = 1;
            }
  
            if (arr[i] == 5) {
                isFive = 1;
            }
        }
  
        // If both zero and five exists 
        if (isZero == 1 && isFive == 1) {
            result = 2;
  
            // Remaining N-1 iterations 
            for (let i = 0; i < n - 1; i++) {
                result = result * (--m);
            }
        } else if (isZero == 1 || isFive == 1) {
            result = 1;
  
            // Remaining N-1 iterations 
            for (let i = 0; i < n - 1; i++) {
                result = result * (--m);
            }
        } else {
            result = -1;
        }
  
        return result;
    }
    
    let n = 3, m = 6;
  
    let arr = [2, 3, 5, 6, 7, 9];
    document.write(numbers(n, arr, m));
    
</script>

Output: 
20

 

Time Complexity: O(m + n), Auxiliary Space: O(1)


Similar Reads