Mth element after K Right Rotations of an Array
Last Updated :
16 Oct, 2023
Given non-negative integers K, M, and an array arr[ ] consisting of N elements, the task is to find the Mth element of the array after K right rotations.
Examples:
Input: arr[] = {3, 4, 5, 23}, K = 2, M = 1
Output: 5
Explanation:
The array after first right rotation a1[ ] = {23, 3, 4, 5}
The array after second right rotation a2[ ] = {5, 23, 3, 4}
1st element after 2 right rotations is 5.
Input: arr[] = {1, 2, 3, 4, 5}, K = 3, M = 2
Output: 4
Explanation:
The array after 3 right rotations has 4 at its second position.
Naive Approach:
The simplest approach to solve the problem is to Perform Right Rotation operation K times and then find the Mth element of the final array.
Algorithm:
- Define a function called leftrotate that takes a vector and an integer d as input. The function should reverse the elements of the vector from the beginning up to index d, then from index d to the end, and finally the entire vector.
- Define a function called rightrotate that takes a vector and an integer d as input. The function should call leftrotate with the vector and the difference between the size of the vector and d as arguments.
- Define a function called getFirstElement that takes an integer array a, its size N, and two integers K and M as input. The function should do the following:
- Initialize a vector v with the elements of array a.
- Right rotate the vector v K times by calling rightrotate in a loop with v and the integer value 1 as arguments, K times.
- Return the Mth element of the rotated vector v.
- In the main function, initialize an integer array a and its size N, and two integers K and M with appropriate values.
- Call the function getFirstElement with an array a, N, K, and M as arguments and print the returned value.
Below is the implementation of the approach:
C++
// C++ program to find the Mth element
// of the array after K right rotations.
#include <bits/stdc++.h>
using namespace std;
// In-place rotates s towards left by d
void leftrotate(vector<int>& v, int d)
{
reverse(v.begin(), v.begin() + d);
reverse(v.begin() + d, v.end());
reverse(v.begin(), v.end());
}
// In-place rotates s towards right by d
void rightrotate(vector<int>& v, int d)
{
leftrotate(v, v.size() - d);
}
// Function to return Mth element of
// array after k right rotations
int getFirstElement(int a[], int N, int K, int M)
{
vector<int> v;
for (int i = 0; i < N; i++)
v.push_back(a[i]);
// Right rotate K times
while (K--) {
rightrotate(v, 1);
}
// return Mth element
return v[M - 1];
}
// Driver code
int main()
{
// Array initialization
int a[] = { 1, 2, 3, 4, 5 };
int N = sizeof(a) / sizeof(a[0]);
int K = 3, M = 2;
// Function call
cout << getFirstElement(a, N, K, M);
return 0;
}
Java
import java.util.Arrays;
public class GFG {
// In-place rotates array towards left by d
static void leftRotate(int[] arr, int d) {
int n = arr.length;
reverse(arr, 0, d - 1);
reverse(arr, d, n - 1);
reverse(arr, 0, n - 1);
}
// In-place rotates array towards right by d
static void rightRotate(int[] arr, int d) {
int n = arr.length;
leftRotate(arr, n - d);
}
// Helper function to reverse a subarray
static void reverse(int[] arr, int start, int end) {
while (start < end) {
int temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
// Function to return Mth element of array after K right rotations
static int getFirstElement(int[] arr, int K, int M) {
int[] rotatedArray = Arrays.copyOf(arr, arr.length);
// Right rotate K times
for (int i = 0; i < K; i++) {
rightRotate(rotatedArray, 1);
}
// Return Mth element
return rotatedArray[M - 1];
}
public static void main(String[] args) {
// Array initialization
int[] arr = {1, 2, 3, 4, 5};
int K = 3;
int M = 2;
// Function call
System.out.println(getFirstElement(arr, K, M));
}
}
Python3
def left_rotate(v, d):
v[:d] = v[:d][::-1]
v[d:] = v[d:][::-1]
v[:] = v[::-1]
def right_rotate(v, d):
left_rotate(v, len(v) - d)
def get_first_element(a, K, M):
v = list(a)
# Right rotate K times
while K > 0:
right_rotate(v, 1)
K -= 1
# Return Mth element
return v[M - 1]
# Driver code
a = [1, 2, 3, 4, 5]
K = 3
M = 2
# Function call
print(get_first_element(a, K, M))
# This code is contributed by Dwaipayan Bandyopadhyay
C#
// C# program to find the Mth element
// of the array after K right rotations.
using System;
using System.Linq;
class GFG
{
// In-place rotates array towards left by d
static void leftrotate(ref int[] v, int d)
{
Array.Reverse(v, 0, d);
Array.Reverse(v, d, v.Length - d);
Array.Reverse(v);
}
// In-place rotates array towards right by d
static void reftrotate(ref int[] v, int d)
{
leftrotate(ref v, v.Length - d);
}
// Function to return Mth element of
// array after K right rotations
static int getFirstElement(int[] a, int K, int M)
{
int[] v = a.ToArray();
// Right rotate K times
while (K > 0)
{
reftrotate(ref v, 1);
K--;
}
// return Mth element
return v[M - 1];
}
static void Main(string[] args)
{
// Array initialization
int[] a = { 1, 2, 3, 4, 5 };
int N = a.Length;
int K = 3, M = 2;
// Function call
Console.WriteLine(getFirstElement(a, K, M));
}
}
JavaScript
// Javascript program to find the Mth element
// of the array after K right rotations
// In-place rotates s towards left by d
function leftrotate(v, d) {
const reversedFirstPart = v.slice(0, d).reverse();
const reversedSecondPart = v.slice(d).reverse();
const reversedArray = reversedFirstPart.concat(reversedSecondPart).reverse();
for (let i = 0; i < v.length; i++) {
v[i] = reversedArray[i];
}
}
// In-place rotates s towards right by d
function rightrotate(v, d) {
leftrotate(v, v.length - d);
}
// Function to return Mth element of
// array after k right rotations
function getFirstElement(a, N, K, M) {
let v = [];
for (let i = 0; i < N; i++) {
v.push(a[i]);
}
// Right rotate K times
while (K--) {
rightrotate(v, 1);
}
// return Mth element
return v[M - 1];
}
// Driver code
// Array initialization
let a = [1, 2, 3, 4, 5];
let N = a.length;
let K = 3;
let M = 2;
// Function call
console.log(getFirstElement(a, N, K, M));
Time Complexity: O(N * K)
Auxiliary Space: O(N)
Efficient Approach:
To optimize the problem, the following observations need to be made:
- If the array is rotated N times it returns the initial array again.
For example, a[ ] = {1, 2, 3, 4, 5}, K=5
Modified array after 5 right rotation a5[ ] = {1, 2, 3, 4, 5}.
- Therefore, the elements in the array after Kth rotation is the same as the element at index K%N in the original array.
- If K >= M, the Mth element of the array after K right rotations is
{ (N-K) + (M-1) } th element in the original array.
- If K < M, the Mth element of the array after K right rotations is:
(M - K - 1) th element in the original array.
Below is the implementation of the above approach:
C++
// C++ program to implement
// the above approach
#include<bits/stdc++.h>
using namespace std;
// Function to return Mth element of
// array after k right rotations
int getFirstElement(int a[], int N,
int K, int M)
{
// The array comes to original state
// after N rotations
K %= N;
int index;
// If K is greater or equal to M
if (K >= M)
// Mth element after k right
// rotations is (N-K)+(M-1) th
// element of the array
index = (N - K) + (M - 1);
// Otherwise
else
// (M - K - 1) th element
// of the array
index = (M - K - 1);
int result = a[index];
// Return the result
return result;
}
// Driver Code
int main()
{
int a[] = { 1, 2, 3, 4, 5 };
int N = sizeof(a) / sizeof(a[0]);
int K = 3, M = 2;
cout << getFirstElement(a, N, K, M);
return 0;
}
Java
// Java program to implement
// the above approach
class GFG{
// Function to return Mth element of
// array after k right rotations
static int getFirstElement(int a[], int N,
int K, int M)
{
// The array comes to original state
// after N rotations
K %= N;
int index;
// If K is greater or equal to M
if (K >= M)
// Mth element after k right
// rotations is (N-K)+(M-1) th
// element of the array
index = (N - K) + (M - 1);
// Otherwise
else
// (M - K - 1) th element
// of the array
index = (M - K - 1);
int result = a[index];
// Return the result
return result;
}
// Driver Code
public static void main(String[] args)
{
int a[] = { 1, 2, 3, 4, 5 };
int N = 5;
int K = 3, M = 2;
System.out.println(getFirstElement(a, N, K, M));
}
}
// This code is contributed by Ritik Bansal
Python3
# Python3 program to implement
# the above approach
# Function to return Mth element of
# array after k right rotations
def getFirstElement(a, N, K, M):
# The array comes to original state
# after N rotations
K %= N
# If K is greater or equal to M
if (K >= M):
# Mth element after k right
# rotations is (N-K)+(M-1) th
# element of the array
index = (N - K) + (M - 1)
# Otherwise
else:
# (M - K - 1) th element
# of the array
index = (M - K - 1)
result = a[index]
# Return the result
return result
# Driver Code
if __name__ == "__main__":
a = [ 1, 2, 3, 4, 5 ]
N = len(a)
K , M = 3, 2
print( getFirstElement(a, N, K, M))
# This code is contributed by chitranayal
C#
// C# program to implement
// the above approach
using System;
class GFG{
// Function to return Mth element of
// array after k right rotations
static int getFirstElement(int []a, int N,
int K, int M)
{
// The array comes to original state
// after N rotations
K %= N;
int index;
// If K is greater or equal to M
if (K >= M)
// Mth element after k right
// rotations is (N-K)+(M-1) th
// element of the array
index = (N - K) + (M - 1);
// Otherwise
else
// (M - K - 1) th element
// of the array
index = (M - K - 1);
int result = a[index];
// Return the result
return result;
}
// Driver Code
public static void Main()
{
int []a = { 1, 2, 3, 4, 5 };
int N = 5;
int K = 3, M = 2;
Console.Write(getFirstElement(a, N, K, M));
}
}
// This code is contributed by Code_Mech
JavaScript
<script>
// JavaScript program to implement
// the approach
// Function to return Mth element of
// array after k right rotations
function getFirstElement(a, N,
K, M)
{
// The array comes to original state
// after N rotations
K %= N;
let index;
// If K is greater or equal to M
if (K >= M)
// Mth element after k right
// rotations is (N-K)+(M-1) th
// element of the array
index = (N - K) + (M - 1);
// Otherwise
else
// (M - K - 1) th element
// of the array
index = (M - K - 1);
let result = a[index];
// Return the result
return result;
}
// Driver Code
let a = [ 1, 2, 3, 4, 5 ];
let N = 5;
let K = 3, M = 2;
document.write(getFirstElement(a, N, K, M));
</script>
Time Complexity: O(1)
Auxiliary Space: O(1)
Similar Reads
Javascript Program to Find Mth element after K Right Rotations of an Array Given non-negative integers K, M, and an array arr[ ] consisting of N elements, the task is to find the Mth element of the array after K right rotations. Examples: Input: arr[] = {3, 4, 5, 23}, K = 2, M = 1 Output: 5 Explanation: The array after first right rotation a1[ ] = {23, 3, 4, 5} The array a
8 min read
Find the Mth element of the Array after K left rotations Given non-negative integers K, M, and an array arr[] with N elements find the Mth element of the array after K left rotations. Examples: Input: arr[] = {3, 4, 5, 23}, K = 2, M = 1Output: 5Explanation: The array after first left rotation a1[ ] = {4, 5, 23, 3}The array after second left rotation a2[ ]
5 min read
Print array after it is right rotated K times Given an array arr[] and an integer k, rotate the array in place k times to the right (clockwise). In each rotation, the last element moves to the front, and all other elements shift one position to the right. Modify the array in place, do not return anything.Examples : Input: arr[] = [1, 2, 3, 4, 5
12 min read
Javascript Program to Find the Mth element of the Array after K left rotations Given non-negative integers K, M, and an array arr[] with N elements find the Mth element of the array after K left rotations. Examples: Input: arr[] = {3, 4, 5, 23}, K = 2, M = 1Output: 5Explanation:Â The array after first left rotation a1[ ] = {4, 5, 23, 3}The array after second left rotation a2[ ]
2 min read
Print array after it is right rotated K times | Set 2 Given an array arr[] of size N and a value K, the task is to print the array rotated by K times to the right. Examples: Input: arr = {1, 3, 5, 7, 9}, K = 2Output: 7 9 1 3 5 Input: arr = {1, 2, 3, 4, 5}, K = 4Output: 2 3 4 5 1 Algorithm: The given problem can be solved by reversing subarrays. Below s
13 min read