Modulus of a Complex Number
Last Updated :
20 Dec, 2022
Given a complex number z, the task is to determine the modulus of this complex number. Note: Given a complex number z = a + ib the modulus is denoted by |z| and is defined as [latex]\left | z \right | = \sqrt{a^{2}+b^{2}}[/latex] Examples:
Input: z = 3 + 4i
Output: 5 |z| = (32 + 42)1/2 = (9 + 16)1/2 = 5
Input: z = 6 - 8i
Output: 10
Explanation: |z| = (62 + (-8)2)1/2 = (36 + 64)1/2 = 10
Approach: For the given complex number z = x + iy:
- Find the real and imaginary parts, x and y respectively.
If z = x +iy
Real part = x
Imaginary part = y
- Find the square of x and y separately.
Square of Real part = x2
Square of Imaginary part = y2
- Find the sum of the computed squares.
Sum = Square of Real part
+ Square of Imaginary part
= x2 + y2
- Find the square root of the computed sum. This will be the modulus of the given complex number
[latex]\left | z \right | = \sqrt{x^{2}+y^{2}}[/latex]
Below is the implementation of the above approach:
C++
// C++ program to find the
// Modulus of a Complex Number
#include <bits/stdc++.h>
using namespace std;
// Function to find modulus
// of a complex number
void findModulo(string s)
{
int l = s.length();
int i, modulus = 0;
// Storing the index of '+'
if (s.find('+') < l) {
i = s.find('+');
}
// Storing the index of '-'
else {
i = s.find('-');
}
// Finding the real part
// of the complex number
string real = s.substr(0, i);
// Finding the imaginary part
// of the complex number
string imaginary = s.substr(i + 1, l - 1);
int x = stoi(real);
int y = stoi(imaginary);
cout << sqrt(x * x + y * y) << "\n";
}
// Driver code
int main()
{
string s = "3+4i";
findModulo(s);
return 0;
}
Java
// Java program to find the
// Modulus of a Complex Number
import java.util.*;
class GFG{
// Function to find modulus
// of a complex number
static void findModulo(String s)
{
int l = s.length();
int i, modulus = 0;
// Storing the index of '+'
if (s.contains("+")) {
i = s.indexOf("+");
}
// Storing the index of '-'
else {
i = s.indexOf("-");
}
// Finding the real part
// of the complex number
String real = s.substring(0, i);
// Finding the imaginary part
// of the complex number
String imaginary = s.substring(i + 1, l-1);
int x = Integer.parseInt(real);
int y = Integer.parseInt(imaginary);
System.out.print(Math.sqrt(x * x + y * y)+ "\n");
}
// Driver code
public static void main(String[] args)
{
String s = "3+4i";
findModulo(s);
}
}
// This code is contributed by Rajput-Ji
Python 3
# Python 3 program to find the
# Modulus of a Complex Number
from math import sqrt
# Function to find modulus
# of a complex number
def findModulo(s):
l = len(s)
modulus = 0
# Storing the index of '+'
if ( '+' in s ):
i = s.index('+')
# Storing the index of '-'
else:
i = s.index('-')
# Finding the real part
# of the complex number
real = s[0:i]
# Finding the imaginary part
# of the complex number
imaginary = s[i + 1:l - 1]
x = int(real)
y = int(imaginary)
print(int(sqrt(x * x + y * y)))
# Driver code
if __name__ == '__main__':
s = "3+4i"
findModulo(s)
# This code is contributed by Surendra_Gangwar
C#
// C# program to find the
// Modulus of a Complex Number
using System;
public class GFG{
// Function to find modulus
// of a complex number
static void findModulo(String s)
{
int l = s.Length;
int i;
// Storing the index of '+'
if (s.Contains("+")) {
i = s.IndexOf("+");
}
// Storing the index of '-'
else {
i = s.IndexOf("-");
}
// Finding the real part
// of the complex number
String real = s.Substring(0, i);
// Finding the imaginary part
// of the complex number
String imaginary = s.Substring(i + 1, l-i - 2);
int x = Int32.Parse(real);
int y = Int32.Parse(imaginary);
Console.Write(Math.Sqrt(x * x + y * y)+ "\n");
}
// Driver code
public static void Main(String[] args)
{
String s = "3+4i";
findModulo(s);
}
}
// This code contributed by sapnasingh4991
JavaScript
// JavaScript program to find the
// Modulus of a Complex Number
// Function to find modulus
// of a complex number
function findModulo(s)
{
let l = s.length;
let i, modulus = 0;
// Storing the index of '+'
if (s.indexOf('+')< l) {
i = s.indexOf('+');
}
// Storing the index of '-'
else {
i = s.indexOf('-');
}
// Finding the real part
// of the complex number
let real = s.substring(0, i);
// Finding the imaginary part
// of the complex number
let imaginary = s.substring(i + 1, l - 1);
let x = parseInt(real);
let y = parseInt(imaginary);
console.log(Math.sqrt(x*x + y*y));
}
// Driver code
let s = "3+4i";
findModulo(s);
// The code is contributed by Gautam goel (gautamgoel962)
Time Complexity: O(1)
Auxiliary Space: O(1)
As constant extra space is used
Similar Reads
How to compute mod of a big number? Given a big number 'num' represented as string and an integer x, find value of "num % a" or "num mod a". Output is expected as an integer. Examples : Input: num = "12316767678678", a = 10 Output: num (mod a) ? 8 The idea is to process all digits one by one and use the property that xy (mod a) ? ((x
4 min read
Modular Exponentiation of Complex Numbers Given four integers A, B, K, M. The task is to find (A + iB)K % M which is a complex number too. A + iB represents a complex number. Examples: Input : A = 2, B = 3, K = 4, M = 5 Output: 1 + i*0 Input : A = 7, B = 3, K = 10, M = 97 Output: 25 + i*29 Prerequisite: Modular Exponentiation Approach: An e
7 min read
Multiplication of two complex numbers given as strings Given two complex numbers in the form of strings. Our task is to print the multiplication of these two complex numbers. Examples: Input : str1 = "1+1i" str2 = "1+1i" Output : "0+2i"Here, (1 + i) * (1 + i) = 1 + i2 + 2 * i = 2i or "0+2i"Input : str1 = "1+-1i" str2 = "1+-1i"Output : "0+-2i"Here, (1 -
12 min read
Find the real and imaginary part of a Complex number Given a complex number Z, the task is to determine the real and imaginary parts of this complex number.Examples: Input: z = 3 + 4i Output: Real part: 3, Imaginary part: 4Input: z = 6 â 8i Output: Real part: 6, Imaginary part: 8 Approach: A complex number can be represented as Z = x + yi, where x is
5 min read
Geometry using Complex Numbers in C++ | Set 2 After going through previous post, we know what exactly are complex numbers and how we can use them to simulate points in a cartesian plane. Now, we will have an insight as to how to use the complex class from STL in C++.To use the complex class from STL we use #include <complex> Defining Poin
5 min read