Modify sequence of first N natural numbers to a given array by replacing pairs with their GCD
Last Updated :
06 Apr, 2023
Given an integer N and an array arr[], the task is to check if a sequence of first N natural numbers, i.e. {1, 2, 3, .. N} can be made equal to arr[] by choosing any pair (i, j) from the sequence and replacing both i and j by GCD of i and j. If possible, then print "Yes". Otherwise, print "No".
Examples:
Input: N = 4, arr[] = {1, 2, 3, 2}
Output: Yes
Explanation: For the pair (2, 4) in the sequence {1, 2, 3, 4}, GCD(2, 4) = 2. Now, the sequence modifies to {1, 2, 3, 2}, which is same as arr[].
Input: N = 3, arr[] = {1, 2, 2}
Output: No
Approach:
We can start by iterating over all pairs of numbers (i, j) such that 1 ? i < j ? N and finding their GCD using the Euclidean algorithm. Then, if we find a pair (i, j) such that GCD(i, j) is equal to arr[i-1] and arr[j-1], we can replace both i and j with GCD(i, j) and continue with the modified sequence. If we are able to modify the sequence to be equal to arr[], then we can print "Yes". Otherwise, we can print "No".
Algorithm:
- Initialize a sequence of first N natural numbers, i.e. {1, 2, 3, .. N}.
- Iterate over all pairs of numbers (i, j) such that 1 ? i < j ? N.
- Compute the GCD of i and j using the Euclidean algorithm.
- If GCD(i, j) is equal to arr[i-1] and arr[j-1], replace both i and j with GCD(i, j) in the sequence.
- If the modified sequence is equal to arr[], print "Yes" and return.
- If no such pair (i, j) is found, print "No" and return.
Implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
// Function to compute the GCD using the Euclidean algorithm
int gcd(int a, int b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
// Function to check if a sequence of first N natural numbers can be made equal to arr[]
void checkSequence(int N, int arr[]) {
// Initialize the sequence of first N natural numbers
vector<int> seq(N);
for (int i = 0; i < N; i++)
seq[i] = i+1;
// Iterate over all pairs of numbers (i, j) such that 1 ? i < j ? N
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
// Compute the GCD of i and j
int g = gcd(seq[i], seq[j]);
// If GCD(i, j) is equal to arr[i-1] and arr[j-1], replace both i and j with GCD(i, j) in the sequence
if (g == arr[i] && g == arr[j]) {
seq[i] = seq[j] = g;
break;
}
}
// If the modified sequence is equal to arr[], print "Yes" and return
if (seq == vector<int>(arr, arr+N)) {
cout << "Yes\n";
return;
}
}
// If no such pair (i, j) is found, print "No" and return
cout << "No\n";
}
// Driver code
int main() {
int N = 4;
int arr[] = {1, 2, 3, 2};
checkSequence(N, arr);
return 0;
}
Java
import java.util.*;
public class Main {
// Function to compute the GCD using the Euclidean
// algorithm
public static int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
// Function to check if a sequence of first N natural
// numbers can be made equal to arr[]
public static void checkSequence(int N, int[] arr)
{
// Initialize the sequence of first N natural
// numbers
List<Integer> seq = new ArrayList<>();
for (int i = 0; i < N; i++)
seq.add(i + 1);
// Iterate over all pairs of numbers (i, j) such
// that 1 ? i < j ? N
for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
// Compute the GCD of i and j
int g = gcd(seq.get(i), seq.get(j));
// If GCD(i, j) is equal to arr[i-1] and
// arr[j-1], replace both i and j with
// GCD(i, j) in the sequence
if (g == arr[i] && g == arr[j]) {
seq.set(i, g);
seq.set(j, g);
break;
}
}
// If the modified sequence is equal to arr[],
// print "Yes" and return
if (seq.equals(Arrays.asList(
Arrays.stream(arr).boxed().toArray(
Integer[] ::new)))) {
System.out.println("Yes");
return;
}
}
// If no such pair (i, j) is found, print "No" and
// return
System.out.println("No");
}
// Driver code
public static void main(String[] args)
{
int N = 4;
int[] arr = { 1, 2, 3, 2 };
checkSequence(N, arr);
}
}
// Contributed by sdeadityasharma
Python3
from typing import List
import math
# Function to compute the GCD using the Euclidean algorithm
def gcd(a: int, b: int) -> int:
if a == 0:
return b
return gcd(b % a, a)
# Function to check if a sequence of first N natural
# numbers can be made equal to arr[]
def checkSequence(N: int, arr: List[int]):
# Initialize the sequence of first N natural numbers
seq = list(range(1, N+1))
# Iterate over all pairs of numbers (i, j) such that 1 ? i < j ? N
for i in range(N):
for j in range(i+1, N):
# Compute the GCD of i and j
g = gcd(seq[i], seq[j])
# If GCD(i, j) is equal to arr[i-1] and arr[j-1], replace both i and j with
# GCD(i, j) in the sequence
if g == arr[i] and g == arr[j]:
seq[i] = g
seq[j] = g
break
# If the modified sequence is equal to arr[], print "Yes" and return
if seq == list(range(1, N+1)):
print("Yes")
return
# If no such pair (i, j) is found, print "No" and return
print("No")
# Driver code
if __name__ == '__main__':
N = 4
arr = [1, 2, 3, 2]
checkSequence(N, arr)
C#
// C# Program for the above approach
using System;
using System.Collections.Generic;
using System.Linq;
class MainClass {
// Function to compute the GCD using the Euclidean
// algorithm
public static int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
// Function to check if a sequence of first N natural
// numbers can be made equal to arr[]
public static void checkSequence(int N, int[] arr)
{
// Initialize the sequence of first N natural
// numbers
List<int> seq = new List<int>();
for (int i = 0; i < N; i++)
seq.Add(i + 1);
// Iterate over all pairs of numbers (i, j) such
// that 1 ? i < j ? N
for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
// Compute the GCD of i and j
int g = gcd(seq[i], seq[j]);
// If GCD(i, j) is equal to arr[i-1] and
// arr[j-1], replace both i and j with
// GCD(i, j) in the sequence
if (g == arr[i] && g == arr[j]) {
seq[i] = g;
seq[j] = g;
break;
}
}
// If the modified sequence is equal to arr[],
// print "Yes" and return
if (seq.SequenceEqual(arr)) {
Console.WriteLine("Yes");
return;
}
}
// If no such pair (i, j) is found, print "No" and
// return
Console.WriteLine("No");
}
// Driver code
public static void Main(string[] args)
{
int N = 4;
int[] arr = { 1, 2, 3, 2 };
checkSequence(N, arr);
}
}
// This code is contributed by Prince Kumar
JavaScript
// Function to compute the GCD using the Euclidean algorithm
function gcd(a, b) {
if (a === 0) {
return b;
}
return gcd(b % a, a);
}
// Function to check if a sequence of first N natural
// numbers can be made equal to arr[]
function checkSequence(N, arr) {
// Initialize the sequence of first N natural numbers
const seq = Array.from({ length: N }, (_, i) => i + 1);
// Iterate over all pairs of numbers (i, j) such that 1 ? i < j ? N
for (let i = 0; i < N; i++) {
for (let j = i + 1; j < N; j++) {
// Compute the GCD of i and j
const g = gcd(seq[i], seq[j]);
// If GCD(i, j) is equal to arr[i-1] and arr[j-1], replace both i and j with
// GCD(i, j) in the sequence
if (g === arr[i] && g === arr[j]) {
seq[i] = g;
seq[j] = g;
break;
}
}
// If the modified sequence is equal to arr[], print "Yes" and return
if (seq.every((value, index) => value === index + 1)) {
console.log("Yes");
return;
}
}
// If no such pair (i, j) is found, print "No" and return
console.log("No");
}
// Driver code
const N = 4;
const arr = [1, 2, 3, 2];
checkSequence(N, arr);
Time Complexity: O(N * sqrt(N) * log(N))
Space Complexity: O(N)
Approach: The idea is based on the fact that the GCD of two numbers lies between 1 and the minimum of the two numbers. By definition of gcd, it's the greatest number that divides both. Therefore, make the number at an index smaller if and only if there exists some number which is its factor. Hence, it can be concluded that for every ith index in the array, if the follow condition holds true, the array arr[] can be obtained from the sequence of first N natural numbers.
(i + 1) % arr[i] == 0
Follow the steps below to solve the problem:
- Traverse the array arr[] using variable i.
- For every ith index, check if (i + 1) % arr[i] is equal to 0 or not. If found to be false for any array element, print "No".
- Otherwise, after complete traversal of the array, print "Yes".
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to check if array arr[]
// can be obtained from first N
// natural numbers or not
void isSequenceValid(vector<int>& B,
int N)
{
for (int i = 0; i < N; i++) {
if ((i + 1) % B[i] != 0) {
cout << "No";
return;
}
}
cout << "Yes";
}
// Driver Code
int main()
{
int N = 4;
vector<int> arr{ 1, 2, 3, 2 };
// Function Call
isSequenceValid(arr, N);
return 0;
}
Java
// Java program for the above approach
class GFG{
// Function to check if array arr[]
// can be obtained from first N
// natural numbers or not
static void isSequenceValid(int[] B,
int N)
{
for(int i = 0; i < N; i++)
{
if ((i + 1) % B[i] != 0)
{
System.out.print("No");
return;
}
}
System.out.print("Yes");
}
// Driver code
public static void main(String[] args)
{
int N = 4;
int[] arr = { 1, 2, 3, 2 };
// Function Call
isSequenceValid(arr, N);
}
}
// This code is contributed by sanjoy_62
Python3
# Python3 program for the above approach
# Function to check if array arr[]
# can be obtained from first N
# natural numbers or not
def isSequenceValid(B, N):
for i in range(N):
if ((i + 1) % B[i] != 0):
print("No")
return
print("Yes")
# Driver Code
N = 4
arr = [ 1, 2, 3, 2 ]
# Function Call
isSequenceValid(arr, N)
# This code is contributed by susmitakundugoaldanga
C#
// C# program for the above approach
using System;
class GFG{
// Function to check if array arr[]
// can be obtained from first N
// natural numbers or not
static void isSequenceValid(int[] B,
int N)
{
for(int i = 0; i < N; i++)
{
if ((i + 1) % B[i] != 0)
{
Console.WriteLine("No");
return;
}
}
Console.WriteLine("Yes");
}
// Driver code
public static void Main()
{
int N = 4;
int[] arr = { 1, 2, 3, 2 };
// Function Call
isSequenceValid(arr, N);
}
}
// This code is contributed by code_hunt
JavaScript
<script>
// Javascript program to implement
// the above approach
// Function to check if array arr[]
// can be obtained from first N
// natural numbers or not
function isSequenceValid(B, N)
{
for(let i = 0; i < N; i++)
{
if ((i + 1) % B[i] != 0)
{
document.write("No");
return;
}
}
document.write("Yes");
}
// Driver code
let N = 4;
let arr = [ 1, 2, 3, 2 ];
// Function Call
isSequenceValid(arr, N);
// This code is contributed by souravghosh0416.
</script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
Modify array by replacing elements with their farthest co-prime number from a given range Given an array arr[] consisting of N integers and two positive integers L and R, the task is to find the farthest co-prime number in the range [L, R] for every array element. Examples: Input: arr[] = {5, 150, 120}, L = 2, R = 250Output: 249 7 247Explanation:The number which is co-prime with arr[0] a
7 min read
Minimum replacement of pairs by their LCM required to reduce given array to its LCM Given an array arr[] consisting of N positive integers, the task is to find the minimum number of pairs (arr[i], arr[j]) from the given array needed to be replaced with their LCM such that the array is reduced to a single element equal to the LCM of the initial array.Examples: Input: arr[] = {1, 2,
9 min read
Maximum count of pairs in Array with GCD greater than 1 by reordering given Array Given an array arr[] of size N. The task is to reorder arr[] and find the maximum number of GCD pairs which follows the conditions given below. Choose any two elements of array Ai and Aj of array where 0 <= i < j < N.Calculate GCD after multiplying Aj with 2 like (Ai, 2 * Aj) which is great
6 min read
Check if GCD of Array can be made greater than 1 by replacing pairs with their products Given three integers L, R, and K. Consider an array arr[] consisting of all the elements from L to R, the task is to check whether the GCD of the array can be made greater than 1 using at most K operations. An operation is defined below: Choose any two numbers from the arrayRemove them from the arra
7 min read
Maximum GCD among all pairs (i, j) of first N natural numbers Given a positive integer N > 1, the task is to find the maximum GCD among all the pairs (i, j) such that i < j < N.Examples: Input: N = 3Output: 3Explanation:All the possible pairs are: (1, 2) (1, 3) (2, 3) with GCD 1.Input: N = 4Output: 2Explanation:Out of all the possible pairs the pair w
6 min read