Mix Order Traversal of a Binary Tree
Last Updated :
03 May, 2023
Given a Binary Tree consisting of N nodes, the task is to print its Mix Order Traversal.
Mix Order Traversal is a tree traversal technique, which involves any two of the existing traversal techniques like Inorder, Preorder and Postorder Traversal. Any two of them can be performed or alternate levels of given tree and a mix traversal can be obtained.
Examples:
Input: N = 6

Output: 7 4 5 1 3 6
Explanation:
Inorder-Preorder Mix Traversal is applied to the given tree in the following order:
Inorder Traversal is applied at level 0
Preorder Traversal is applied at level 1
Inorder Traversal at level 2.

Output: 4 5 7 1 6 3
Explanation:
Inorder-Postorder Mix Traversal is applied to the given tree in the following order:
Inorder Traversal is applied at level 0
Postorder Traversal is applied at level 1
Inorder Traversal at level 2.
Approach:
The possible Mix Order Traversals are as follows:
Inorder-Preorder Mix Traversal
Steps for inorder() will be:
- Perform Preorder Traversal on the left subtree.
- Print the current node.
- Perform Preorder Traversal on right subtree.
Steps for preorder() will be:
- Print the current node.
- Perform Inorder Traversal on left subtree(root->left).
- Perform Inorder Traversal on right subtree.
Below is the implementation of the above approach:
C++
// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
void inOrder(struct node* root);
void preOrder(struct node* root);
// Node structure
struct node {
char data;
struct node *left, *right;
};
// Creates and initialize a new node
struct node* newNode(char ch)
{
// Allocating memory to a new node
struct node* n = (struct node*)
malloc(sizeof(struct node));
n->data = ch;
n->left = NULL;
n->right = NULL;
return n;
}
// Perform Inorder Traversal
void inOrder(struct node* root)
{
if (root) {
preOrder(root->left);
cout << root->data << " ";
preOrder(root->right);
}
}
// Perform Preorder Traversal
void preOrder(struct node* root)
{
if (root) {
cout << root->data << " ";
inOrder(root->left);
inOrder(root->right);
}
}
// Driver Code
int main()
{
// Given tree
struct node* root = newNode('1');
root->left = newNode('7');
root->right = newNode('3');
root->left->left = newNode('4');
root->left->right = newNode('5');
root->right->left = newNode('6');
// Perform Mix order traversal
inOrder(root);
return 0;
}
Java
// Java program to implement
// the above approach
import java.util.*;
class GFG{
// Node structure
static class node
{
char data;
node left, right;
};
// Creates and initialize a new node
static node newNode(char ch)
{
// Allocating memory to a new node
node n = new node();
n.data = ch;
n.left = null;
n.right = null;
return n;
}
// Perform Inorder Traversal
static void inOrder(node root)
{
if (root != null)
{
preOrder(root.left);
System.out.print(root.data + " ");
preOrder(root.right);
}
}
// Perform Preorder Traversal
static void preOrder(node root)
{
if (root != null)
{
System.out.print(root.data + " ");
inOrder(root.left);
inOrder(root.right);
}
}
// Driver Code
public static void main(String[] args)
{
// Given tree
node root = newNode('1');
root.left = newNode('7');
root.right = newNode('3');
root.left.left = newNode('4');
root.left.right = newNode('5');
root.right.left = newNode('6');
// Perform Mix order traversal
inOrder(root);
}
}
// This code is contributed by 29AjayKumar
Python3
# Python3 program to implement the above approach
# Node structure
class node:
def __init__(self):
self.data = 0
self.left = None
self.right = None
# Creates and initialize a new node
def newNode(ch):
# Allocating memory to a new node
n = node()
n.data = ch
n.left = None
n.right = None
return n
# Perform Inorder Traversal
def inOrder(root):
if root != None:
preOrder(root.left)
print(root.data, end = " ")
preOrder(root.right)
# Perform Preorder Traversal
def preOrder(root):
if root != None:
print(root.data, end = " ")
inOrder(root.left)
inOrder(root.right)
# Driver Code
# Given tree
root = newNode('1')
root.left = newNode('7')
root.right = newNode('3')
root.left.left = newNode('4')
root.left.right = newNode('5')
root.right.left = newNode('6')
# Perform Mix order traversal
inOrder(root)
# This code is contributed by divyeshrabadiya07.
C#
// C# program to implement
// the above approach
using System;
class GFG{
// Node structure
class node
{
public char data;
public node left, right;
};
// Creates and initialize a new node
static node newNode(char ch)
{
// Allocating memory to a new node
node n = new node();
n.data = ch;
n.left = null;
n.right = null;
return n;
}
// Perform Inorder Traversal
static void inOrder(node root)
{
if (root != null)
{
preOrder(root.left);
Console.Write(root.data + " ");
preOrder(root.right);
}
}
// Perform Preorder Traversal
static void preOrder(node root)
{
if (root != null)
{
Console.Write(root.data + " ");
inOrder(root.left);
inOrder(root.right);
}
}
// Driver Code
public static void Main(String[] args)
{
// Given tree
node root = newNode('1');
root.left = newNode('7');
root.right = newNode('3');
root.left.left = newNode('4');
root.left.right = newNode('5');
root.right.left = newNode('6');
// Perform Mix order traversal
inOrder(root);
}
}
// This code is contributed by sapnasingh4991
JavaScript
<script>
// Javascript program to implement
// the above approach
// Node structure
class node
{
constructor()
{
this.data = 0;
this.left = null;
this.right = null;
}
};
// Creates and initialize a new node
function newNode(ch)
{
// Allocating memory to a new node
var n = new node();
n.data = ch;
n.left = null;
n.right = null;
return n;
}
// Perform Inorder Traversal
function inOrder(root)
{
if (root != null)
{
preOrder(root.left);
document.write(root.data + " ");
preOrder(root.right);
}
}
// Perform Preorder Traversal
function preOrder(root)
{
if (root != null)
{
document.write(root.data + " ");
inOrder(root.left);
inOrder(root.right);
}
}
// Driver Code
// Given tree
var root = newNode('1');
root.left = newNode('7');
root.right = newNode('3');
root.left.left = newNode('4');
root.left.right = newNode('5');
root.right.left = newNode('6');
// Perform Mix order traversal
inOrder(root);
</script>
The time complexity for both inOrder and preOrder traversals is O(n), where n is the number of nodes in the tree. This is because each node is visited once.
Auxiliary space complexity:
The auxiliary space of newNode function is O(1), because it only allocates memory for a single node.
The auxiliary space complexity of inOrder and preOrder functions is O(h), where h is the height of the tree.
Preorder-Postorder Mix Traversal
Steps for preorder() are as follows:
- Print the current node.
- Perform Postorder traversal on left subtree.
- Perform Postorder Traversal on the right subtree.
Steps for postorder() are as follows:
- Perform preorder traversal on the left subtree.
- Perform preorder traversal on right subtree.
- Print the current node.
Below is the implementation of the above approach:
C++
// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
void preOrder(struct node* root);
void postOrder(struct node* root);
// Node structure
struct node {
char data;
struct node *left, *right;
};
// Creates and initialize a new node
struct node* newNode(char ch)
{
// Allocating memory to a new node
struct node* n = (struct node*)
malloc(sizeof(struct node));
n->data = ch;
n->left = NULL;
n->right = NULL;
return n;
}
// Perform Preorder Traversal
void preOrder(struct node* root)
{
if (root) {
cout << root->data << " ";
postOrder(root->left);
postOrder(root->right);
}
}
// Perform Postorder Traversal
void postOrder(struct node* root)
{
if (root) {
preOrder(root->left);
preOrder(root->right);
cout << root->data << " ";
}
}
// Driver Code
int main()
{
// Given tree
struct node* root = newNode('A');
root->left = newNode('B');
root->right = newNode('C');
root->left->left = newNode('F');
root->left->right = newNode('D');
root->right->right = newNode('E');
// Starting Mix order traversal
preOrder(root);
return 0;
}
Java
// Java Program to implement
// the above approach
class GFG{
// Node structure
static class node
{
char data;
node left, right;
};
// Creates and initialize a new node
static node newNode(char ch)
{
// Allocating memory to a new node
node n = new node();
n.data = ch;
n.left = null;
n.right = null;
return n;
}
// Perform Preorder Traversal
static void preOrder(node root)
{
if (root != null)
{
System.out.print(root.data + " ");
postOrder(root.left);
postOrder(root.right);
}
}
// Perform Postorder Traversal
static void postOrder(node root)
{
if (root != null)
{
preOrder(root.left);
preOrder(root.right);
System.out.print(root.data + " ");
}
}
// Driver Code
public static void main(String[] args)
{
// Given tree
node root = newNode('A');
root.left = newNode('B');
root.right = newNode('C');
root.left.left = newNode('F');
root.left.right = newNode('D');
root.right.right = newNode('E');
// Starting Mix order traversal
preOrder(root);
}
}
// This code is contributed by Rajput-Ji
Python3
# Python3 Program to implement the above approach
# Node structure
class node:
def __init__(self):
self.data = '0'
self.left = None
self.right = None
# Creates and initialize a new node
def newNode(ch):
# Allocating memory to a new node
n = node()
n.data = ch
n.left = None
n.right = None
return n
# Perform Preorder Traversal
def preOrder(root):
if root != None:
print(root.data, end = " ")
postOrder(root.left)
postOrder(root.right)
# Perform Postorder Traversal
def postOrder(root):
if root != None:
preOrder(root.left)
preOrder(root.right)
print(root.data, end = " ")
# Given tree
root = newNode('A')
root.left = newNode('B')
root.right = newNode('C')
root.left.left = newNode('F')
root.left.right = newNode('D')
root.right.right = newNode('E')
# Starting Mix order traversal
preOrder(root)
# This code is contributed by divyesh072019.
C#
// C# Program to implement
// the above approach
using System;
class GFG{
// Node structure
class node
{
public char data;
public node left, right;
};
// Creates and initialize a new node
static node newNode(char ch)
{
// Allocating memory to a new node
node n = new node();
n.data = ch;
n.left = null;
n.right = null;
return n;
}
// Perform Preorder Traversal
static void preOrder(node root)
{
if (root != null)
{
Console.Write(root.data + " ");
postOrder(root.left);
postOrder(root.right);
}
}
// Perform Postorder Traversal
static void postOrder(node root)
{
if (root != null)
{
preOrder(root.left);
preOrder(root.right);
Console.Write(root.data + " ");
}
}
// Driver Code
public static void Main(String[] args)
{
// Given tree
node root = newNode('A');
root.left = newNode('B');
root.right = newNode('C');
root.left.left = newNode('F');
root.left.right = newNode('D');
root.right.right = newNode('E');
// Starting Mix order traversal
preOrder(root);
}
}
// This code is contributed by Rohit_ranjan
JavaScript
<script>
// Javascript Program to implement the above approach
// Node structure
class node
{
constructor() {
this.left;
this.right;
this.data;
}
}
// Creates and initialize a new node
function newNode(ch)
{
// Allocating memory to a new node
let n = new node();
n.data = ch;
n.left = null;
n.right = null;
return n;
}
// Perform Preorder Traversal
function preOrder(root)
{
if (root != null)
{
document.write(root.data + " ");
postOrder(root.left);
postOrder(root.right);
}
}
// Perform Postorder Traversal
function postOrder(root)
{
if (root != null)
{
preOrder(root.left);
preOrder(root.right);
document.write(root.data + " ");
}
}
// Given tree
let root = newNode('A');
root.left = newNode('B');
root.right = newNode('C');
root.left.left = newNode('F');
root.left.right = newNode('D');
root.right.right = newNode('E');
// Starting Mix order traversal
preOrder(root);
// This code is contributed by rameshtravel07.
</script>
Time Complexity: O(N) where N is the number of nodes in the tree.
Auxiliary Space: O(log(N))
Inorder-Postorder Mix Traversal
Steps for inorder() are as follows:
- Perform Postorder Traversal on the left subtree.
- Print the current node.
- Perform Postorder Traversal on the right subtree.
Steps for postorder() will be:
- Perform Inorder Traversal on left subtree.
- Perform Inorder Traversal on right subtree.
- Print the current node.
Below is the implementation of the above approach:
C++
// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
void inOrder(struct node* root);
void postOrder(struct node* root);
// Node structure
struct node {
char data;
struct node *left, *right;
};
// Creates and initialize a new node
struct node* newNode(char ch)
{
// Allocating memory to a new node
struct node* n = (struct node*)
malloc(sizeof(struct node));
n->data = ch;
n->left = NULL;
n->right = NULL;
return n;
}
// Perform Inorder Traversal
void inOrder(struct node* root)
{
if (root) {
postOrder(root->left);
cout << root->data << " ";
postOrder(root->right);
}
}
// Perform Postorder Traversal
void postOrder(struct node* root)
{
if (root) {
inOrder(root->left);
inOrder(root->right);
cout << root->data << " ";
}
}
// Driver Code
int main()
{
// Given tree
struct node* root = newNode('A');
root->left = newNode('B');
root->right = newNode('C');
root->left->left = newNode('F');
root->left->right = newNode('D');
root->right->right = newNode('E');
// Starting Mix order traversal
inOrder(root);
return 0;
}
Java
// Java Program to implement
// the above approach
import java.util.*;
class GFG{
// Node structure
static class node
{
char data;
node left, right;
};
// Creates and initialize a new node
static node newNode(char ch)
{
// Allocating memory to a new node
node n = new node();
n.data = ch;
n.left = null;
n.right = null;
return n;
}
// Perform Inorder Traversal
static void inOrder(node root)
{
if (root != null)
{
postOrder(root.left);
System.out.print(root.data + " ");
postOrder(root.right);
}
}
// Perform Postorder Traversal
static void postOrder(node root)
{
if (root != null)
{
inOrder(root.left);
inOrder(root.right);
System.out.print(root.data + " ");
}
}
// Driver Code
public static void main(String[] args)
{
// Given tree
node root = newNode('A');
root.left = newNode('B');
root.right = newNode('C');
root.left.left = newNode('F');
root.left.right = newNode('D');
root.right.right = newNode('E');
// Starting Mix order traversal
inOrder(root);
}
}
// This code is contributed by sapnasingh4991
Python3
# Python3 Program to implement the above approach
# Node structure
class node:
def __init__(self):
self.data = '0'
self.left = None
self.right = None
# Creates and initialize a new node
def newNode(ch):
# Allocating memory to a new node
n = node()
n.data = ch
n.left = None
n.right = None
return n
# Perform Inorder Traversal
def inOrder(root):
if root != None:
postOrder(root.left)
print(root.data, end = " ")
postOrder(root.right)
# Perform Postorder Traversal
def postOrder(root):
if root != None:
inOrder(root.left)
inOrder(root.right)
print(root.data, end = " ")
# Given tree
root = newNode('A')
root.left = newNode('B')
root.right = newNode('C')
root.left.left = newNode('F')
root.left.right = newNode('D')
root.right.right = newNode('E')
# Starting Mix order traversal
inOrder(root)
# This code is contributed by decode2207.
C#
// C# Program to implement
// the above approach
using System;
class GFG{
// Node structure
class node
{
public char data;
public node left, right;
};
// Creates and initialize a new node
static node newNode(char ch)
{
// Allocating memory to a new node
node n = new node();
n.data = ch;
n.left = null;
n.right = null;
return n;
}
// Perform Inorder Traversal
static void inOrder(node root)
{
if (root != null)
{
postOrder(root.left);
Console.Write(root.data + " ");
postOrder(root.right);
}
}
// Perform Postorder Traversal
static void postOrder(node root)
{
if (root != null)
{
inOrder(root.left);
inOrder(root.right);
Console.Write(root.data + " ");
}
}
// Driver Code
public static void Main(String[] args)
{
// Given tree
node root = newNode('A');
root.left = newNode('B');
root.right = newNode('C');
root.left.left = newNode('F');
root.left.right = newNode('D');
root.right.right = newNode('E');
// Starting Mix order traversal
inOrder(root);
}
}
// This code is contributed by sapnasingh4991
JavaScript
<script>
// Javascript Program to implement the above approach
// Node structure
class node
{
constructor() {
this.left;
this.right;
this.data;
}
}
// Creates and initialize a new node
function newNode(ch)
{
// Allocating memory to a new node
let n = new node();
n.data = ch;
n.left = null;
n.right = null;
return n;
}
// Perform Inorder Traversal
function inOrder(root)
{
if (root != null)
{
postOrder(root.left);
document.write(root.data + " ");
postOrder(root.right);
}
}
// Perform Postorder Traversal
function postOrder(root)
{
if (root != null)
{
inOrder(root.left);
inOrder(root.right);
document.write(root.data + " ");
}
}
// Given tree
let root = newNode('A');
root.left = newNode('B');
root.right = newNode('C');
root.left.left = newNode('F');
root.left.right = newNode('D');
root.right.right = newNode('E');
// Starting Mix order traversal
inOrder(root);
// This code is contributed by mukesh07.
</script>
Time Complexity: O(N)
Auxiliary Space: O(N)
Similar Reads
Double Order Traversal of a Binary Tree
Given a Binary Tree, the task is to find its Double Order Traversal. Double Order Traversal is a tree traversal technique in which every node is traversed twice in the following order: Visit the Node.Traverse the Left Subtree.Visit the Node.Traverse the Right Subtree.Examples:Input: Output: 1 7 4 4
6 min read
Preorder Traversal of Binary Tree
Preorder traversal is a tree traversal method that follows the Root-Left-Right order:The root node of the subtree is visited first.Next, the left subtree is recursively traversed.Finally, the right subtree is recursively traversed.How does Preorder Traversal work?Key Properties: Used in expression t
5 min read
Postorder Traversal of Binary Tree
Postorder traversal is a tree traversal method that follows the Left-Right-Root order:The left subtree is visited first.The right subtree is visited next.The root node is processed last.How does Postorder Traversal work?Key Properties:It is used for tree deletion because subtrees are deleted before
5 min read
Triple Order Traversal of a Binary Tree
Given a Binary Tree, the task is to find its Triple Order Traversal. Triple Order Traversal is a tree traversal technique in which every node is traversed thrice in the following order: Visit the root nodeTraverse the left subtreeVisit the root nodeTraverse the right subtreeVisit the root node.Examp
7 min read
Inorder Traversal of Binary Tree
Inorder traversal is a depth-first traversal method that follows this sequence:Left subtree is visited first.Root node is processed next.Right subtree is visited last.How does Inorder Traversal work?Key Properties:If applied to a Binary Search Tree (BST), it returns elements in sorted order.Ensures
5 min read
Middle To Up-Down Order traversal of a Binary Tree
Given a binary tree, the task is to traverse this binary tree from the middle to the up-down order. In Middle to up-down order traversal, the following steps are performed: First, print the middle level of the tree.Then, print the elements at one level above the middle level of the tree.Then, print
15+ min read
Boundary Level order traversal of a Binary Tree
Given a Binary Tree, the task is to print all levels of this tree in Boundary Level order traversal. Boundary Level order traversal: In this traversal, the first element of the level (starting boundary) is printed first, followed by last element (ending boundary). Then the process is repeated for th
11 min read
Sideways traversal of a Complete Binary Tree
Given a Complete Binary Tree, the task is to print the elements in the following pattern. Let's consider the tree to be: The tree is traversed in the following way: The output for the above tree is: 1 3 7 11 10 9 8 4 5 6 2 Approach: The idea is to use the modified breadth first search function to st
15+ min read
Specific Level Order Traversal of Binary Tree
Given a Binary Tree, the task is to perform a Specific Level Order Traversal of the tree such that at each level print 1st element then the last element, then 2nd element and 2nd last element, until all elements of that level are printed and so on.Examples:Input: Output: 5 3 7 2 8 4 6 9 0 5 1 Explan
8 min read
Diagonal Traversal of Binary Tree
Given a Binary Tree, the task is to print the diagonal traversal of the binary tree.Note: If the diagonal element are present in two different subtrees, then left subtree diagonal element should be taken first and then right subtree. Example:Input: Output: 8 10 14 3 6 7 13 1 4Explanation: The above
7 min read