Minimum size substring to be removed to make a given string palindromic
Last Updated :
03 Jun, 2024
Given a string S, the task is to print the string after removing the minimum size substring such that S is a palindrome or not.
Examples:
Input: S = “pqrstsuvwrqp”
Output: pqrstsrqp
Explanation:
Removal of the substring “uvw” modifies S to a palindromic string.
Input: S = “geeksforskeeg”
Output: geeksfskeeg
Explanation:
Removal of substring “or” modifies S to a palindromic string.
Approach:
The idea is to include maximum size prefix and suffix from the given string S whose concatenation forms a palindrome. Then, choose the maximum length prefix or suffix from the remaining string which is a palindrome in itself.
Below is the illustration of the approach with the help of an image:
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
// Function to find palindromic
// prefix of maximum length
string palindromePrefix(string S)
{
int n = S.size();
// Finding palindromic prefix of
// maximum length
for (int i = n - 1; i >= 0; i--) {
string curr = S.substr(0, i + 1);
// Checking if curr substring
// is palindrome or not.
int l = 0, r = curr.size() - 1;
bool is_palindrome = 1;
while (l < r) {
if (curr[l] != curr[r]) {
is_palindrome = 0;
break;
}
l++;
r--;
}
// Condition to check if the
// prefix is a palindrome
if (is_palindrome)
return curr;
}
// if no palindrome exist
return "";
}
// Function to find the maximum size
// palindrome such that after removing
// minimum size substring
string maxPalindrome(string S)
{
int n = S.size();
if (n <= 1) {
return S;
}
string pre = "", suff = "";
// Finding prefix and suffix
// of same length
int i = 0, j = n - 1;
while (S[i] == S[j] && i < j) {
i++;
j--;
}
// Matching the ranges
i--;
j++;
pre = S.substr(0, i + 1);
suff = S.substr(j);
// It is possible that the whole
// string is palindrome.
// Case 1: Length is even and
// whole string is palindrome
if (j - i == 1) {
return pre + suff;
}
// Case 2: Length is odd and
// whole string is palindrome
if (j - i == 2) {
// Adding that mid character
string mid_char = S.substr(i + 1, 1);
return pre + mid_char + suff;
}
// Add prefix or suffix of the remaining
// string or suffix, whichever is longer
string rem_str
= S.substr(i + 1, j - i - 1);
string pre_of_rem_str
= palindromePrefix(rem_str);
// Reverse the remaining string to
// find the palindromic suffix
reverse(rem_str.begin(), rem_str.end());
string suff_of_rem_str
= palindromePrefix(rem_str);
if (pre_of_rem_str.size()
>= suff_of_rem_str.size()) {
return pre + pre_of_rem_str + suff;
}
else {
return pre + suff_of_rem_str + suff;
}
}
// Driver Code
int main()
{
string S = "geeksforskeeg";
cout << maxPalindrome(S);
return 0;
}
Java
// Java program of the
// above approach
import java.util.*;
class GFG{
// Function to find palindromic
// prefix of maximum length
static String palindromePrefix(String S)
{
int n = S.length();
// Finding palindromic prefix of
// maximum length
for(int i = n - 1; i >= 0; i--)
{
String curr = S.substring(0, i + 1);
// Checking if curr subString
// is palindrome or not.
int l = 0, r = curr.length() - 1;
boolean is_palindrome = true;
while (l < r)
{
if (curr.charAt(l) != curr.charAt(r))
{
is_palindrome = false;
break;
}
l++;
r--;
}
// Condition to check if the
// prefix is a palindrome
if (is_palindrome)
return curr;
}
// If no palindrome exist
return "";
}
// Function to find the maximum size
// palindrome such that after removing
// minimum size subString
static String maxPalindrome(String S)
{
int n = S.length();
if (n <= 1)
{
return S;
}
String pre = "", suff = "";
// Finding prefix and suffix
// of same length
int i = 0, j = n - 1;
while (S.charAt(i) ==
S.charAt(j) && i < j)
{
i++;
j--;
}
// Matching the ranges
i--;
j++;
pre = S.substring(0, i + 1);
suff = S.substring(j);
// It is possible that the whole
// String is palindrome.
// Case 1: Length is even and
// whole String is palindrome
if (j - i == 1)
{
return pre + suff;
}
// Case 2: Length is odd and
// whole String is palindrome
if (j - i == 2)
{
// Adding that mid character
String mid_char = S.substring(i + 1,
i + 2);
return pre + mid_char + suff;
}
// Add prefix or suffix of the remaining
// String or suffix, whichever is longer
String rem_str = S.substring(i + 1, j);
String pre_of_rem_str = palindromePrefix(rem_str);
// Reverse the remaining String to
// find the palindromic suffix
rem_str = reverse(rem_str);
String suff_of_rem_str = palindromePrefix(rem_str);
if (pre_of_rem_str.length() >=
suff_of_rem_str.length())
{
return pre + pre_of_rem_str + suff;
}
else
{
return pre + suff_of_rem_str + suff;
}
}
static String reverse(String input)
{
char[] a = input.toCharArray();
int l, r = a.length - 1;
for(l = 0; l < r; l++, r--)
{
char temp = a[l];
a[l] = a[r];
a[r] = temp;
}
return String.valueOf(a);
}
// Driver Code
public static void main(String[] args)
{
String S = "geeksforskeeg";
System.out.print(maxPalindrome(S));
}
}
// This code is contributed by Amit Katiyar
Python
# Python3 program of the
# above approach
# Function to find palindromic
# prefix of maximum length
def palindromePrefix(S):
n = len(S)
# Finding palindromic prefix
# of maximum length
for i in range(n - 1, -1, -1):
curr = S[0 : i + 1]
# Checking if curr substring
# is palindrome or not.
l = 0
r = len(curr) - 1
is_palindrome = 1
while (l < r):
if (curr[l] != curr[r]):
is_palindrome = 0
break
l += 1
r -= 1
# Condition to check if the
# prefix is a palindrome
if (is_palindrome):
return curr
# if no palindrome exist
return ""
# Function to find the maximum
# size palindrome such that
# after removing minimum size
# substring
def maxPalindrome(S):
n = len(S)
if (n <= 1):
return S
pre = ""
suff = ""
# Finding prefix and
# suffix of same length
i = 0
j = n - 1
while (S[i] == S[j] and
i < j):
i += 1
j -= 1
# Matching the ranges
i -= 1
j += 1
pre = S[0 : i + 1]
suff = S[j:]
# It is possible that the
# whole string is palindrome.
# Case 1: Length is even and
# whole string is palindrome
if (j - i == 1):
return pre + suff
# Case 2: Length is odd and
# whole string is palindrome
if (j - i == 2):
# Adding that mid character
mid_char = S[i + 1 : i + 2]
return pre + mid_char + suff
# Add prefix or suffix of the
# remaining string or suffix,
# whichever is longer
rem_str = S[i + 1 : j]
pre_of_rem_str = palindromePrefix(rem_str)
# Reverse the remaining string to
# find the palindromic suffix
list1 = list(rem_str)
list1.reverse()
rem_str = ''.join(list1)
suff_of_rem_str = palindromePrefix(rem_str)
if (len(pre_of_rem_str) >=
len(suff_of_rem_str)):
return (pre + pre_of_rem_str +
suff)
else:
return (pre + suff_of_rem_str +
suff)
# Driver Code
if __name__ == "__main__":
S = "geeksforskeeg"
print(maxPalindrome(S))
# This code is contributed by Chitranayal
C#
// C# program of the
// above approach
using System;
class GFG{
// Function to find palindromic
// prefix of maximum length
static String palindromePrefix(String S)
{
int n = S.Length;
// Finding palindromic prefix of
// maximum length
for(int i = n - 1; i >= 0; i--)
{
String curr = S.Substring(0, i + 1);
// Checking if curr subString
// is palindrome or not.
int l = 0, r = curr.Length - 1;
bool is_palindrome = true;
while (l < r)
{
if (curr[l] != curr[r])
{
is_palindrome = false;
break;
}
l++;
r--;
}
// Condition to check if the
// prefix is a palindrome
if (is_palindrome)
return curr;
}
// If no palindrome exist
return "";
}
// Function to find the maximum size
// palindrome such that after removing
// minimum size subString
static String maxPalindrome(String S)
{
int n = S.Length;
if (n <= 1)
{
return S;
}
String pre = "", suff = "";
// Finding prefix and suffix
// of same length
int i = 0, j = n - 1;
while (S[i] == S[j] && i < j)
{
i++;
j--;
}
// Matching the ranges
i--;
j++;
pre = S.Substring(0, i + 1);
suff = S.Substring(j);
// It is possible that the whole
// String is palindrome.
// Case 1: Length is even and
// whole String is palindrome
if (j - i == 1)
{
return pre + suff;
}
// Case 2: Length is odd and
// whole String is palindrome
if (j - i == 2)
{
// Adding that mid character
String mid_char = S.Substring(i + 1,
i + 2);
return pre + mid_char + suff;
}
// Add prefix or suffix of the remaining
// String or suffix, whichever is longer
String rem_str = S.Substring(i + 1, j);
String pre_of_rem_str = palindromePrefix(rem_str);
// Reverse the remaining String to
// find the palindromic suffix
rem_str = reverse(rem_str);
String suff_of_rem_str = palindromePrefix(rem_str);
if (pre_of_rem_str.Length >=
suff_of_rem_str.Length)
{
return pre + pre_of_rem_str + suff;
}
else
{
return pre + suff_of_rem_str + suff;
}
}
static String reverse(String input)
{
char[] a = input.ToCharArray();
int l, r = a.Length - 1;
for(l = 0; l < r; l++, r--)
{
char temp = a[l];
a[l] = a[r];
a[r] = temp;
}
return String.Join("", a);
}
// Driver Code
public static void Main(String[] args)
{
String S = "geeksforskeeg";
Console.Write(maxPalindrome(S));
}
}
// This code is contributed by shikhasingrajput
JavaScript
<script>
// javascript program for the
// above approach
// Function to find palindromic
// prefix of maximum length
function palindromePrefix(S)
{
let n = S.length;
// Finding palindromic prefix of
// maximum length
for(let i = n - 1; i >= 0; i--)
{
let curr = S.substr(0, i + 1);
// Checking if curr subString
// is palindrome or not.
let l = 0, r = curr.length - 1;
let is_palindrome = true;
while (l < r)
{
if (curr[l] != curr[r])
{
is_palindrome = false;
break;
}
l++;
r--;
}
// Condition to check if the
// prefix is a palindrome
if (is_palindrome)
return curr;
}
// If no palindrome exist
return "";
}
// Function to find the maximum size
// palindrome such that after removing
// minimum size subString
function maxPalindrome(S)
{
let n = S.length;
if (n <= 1)
{
return S;
}
let pre = "", suff = "";
// Finding prefix and suffix
// of same length
let i = 0, j = n - 1;
while (S[i] ==
S[j] && i < j)
{
i++;
j--;
}
// Matching the ranges
i--;
j++;
pre = S.substr(0, i + 1);
suff = S.substr(j);
// It is possible that the whole
// String is palindrome.
// Case 1: Length is even and
// whole String is palindrome
if (j - i == 1)
{
return pre + suff;
}
// Case 2: Length is odd and
// whole String is palindrome
if (j - i == 2)
{
// Adding that mid character
let mid_char = S.substr(i + 1,
i + 2);
return pre + mid_char + suff;
}
// Add prefix or suffix of the remaining
// String or suffix, whichever is longer
let rem_str = S.substr(i + 1, j);
let pre_of_rem_str = palindromePrefix(rem_str);
// Reverse the remaining String to
// find the palindromic suffix
rem_str = reverse(rem_str);
let suff_of_rem_str = palindromePrefix(rem_str);
if (pre_of_rem_str.length >=
suff_of_rem_str.length)
{
return pre + pre_of_rem_str + suff;
}
else
{
return pre + suff_of_rem_str + suff;
}
}
function reverse(input)
{
let a = input.split('');
let l, r = a.length - 1;
for(l = 0; l < r; l++, r--)
{
let temp = a[l];
a[l] = a[r];
a[r] = temp;
}
return parseInt(a);
}
// Driver Code
let S = "geeksforskeeg";
document.write(maxPalindrome(S));
// This code is contributed by avijitmondal1998.
</script>
Time Complexity: O(N2)Â
Auxiliary Space: O(N)
Minimum size substring to be removed to make a given string palindromic using Prefix Function
The idea is to choose the longest prefix and suffix such that they form a palindrome. After that from the remaining string we choose the longest prefix or suffix which is a palindrome. For computing the longest palindromic prefix(or suffix) we use Prefix Function which will take linear time to determine it.
Follow the steps to solve the above problem:
- Find the longest prefix(say s[0, l]) which is also a palindrome of the suffix(say s[n-l, n-1]) of the string str. Prefix and Suffix don’t overlap.
- Out of the remaining substring(s[l+1, n-l-1]), find the longest palindromic substring(say t) which is either a suffix or prefix of the remaining string.
- The concatenation of s[0, l], t and s[n-l, n-l-1] is the longest palindromic substring.
Below is the implementation of above approach:
C++
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
// Function to compute the optimized Prefix Function of a
// string in O(N) time
vector<ll> prefix_function(string s)
{
ll n = (ll)s.length();
vector<ll> pi(n);
for (ll i = 1; i < n; i++) {
ll j = pi[i - 1];
while (j > 0 && s[i] != s[j])
j = pi[j - 1];
if (s[i] == s[j])
j++;
pi[i] = j;
}
return pi;
}
// Function to find the length of the longest palindromic
// prefix (or suffix) using Prefix Function
ll LongestPalindromicPrefix(string str)
{
string temp = str + '?';
reverse(str.begin(), str.end());
temp += str;
ll n = temp.size();
vector<ll> lps = prefix_function(temp);
return lps[n - 1];
}
// Function to solve the problem and print the modified string
void solve(string s)
{
int n = s.size();
int i = 0, j = n - 1;
// Find the mismatched characters from the beginning and
// end of the string
while (i <= j) {
if (s[i] != s[j])
break;
i++, j--;
}
// If the entire string is a palindrome, no modification needed
if (i > j) {
cout << s << "\n";
return;
}
// Length of the common prefix and suffix
int l = i;
// Extract the substring between the mismatched characters
string t1, t2;
for (int z = i; z <= j; z++)
t1.push_back(s[z]);
// Create the reverse of the substring
t2 = t1;
reverse(t2.begin(), t2.end());
// Find the length of the longest palindromic prefix and suffix
int x = LongestPalindromicPrefix(t1);
int y = LongestPalindromicPrefix(t2);
// Print the modified string by removing the minimum size
// substring to make it palindromic
for (int i = 0; i < l; i++)
cout << s[i];
if (x > y)
for (int i = l; i < l + x; i++)
cout << s[i];
else
for (int i = (n - l) - y; i < (n - l); i++)
cout << s[i];
for (int i = (n - l); i < n; i++)
cout << s[i];
cout << "\n";
}
// Driver Code
int main()
{
string s = "geeksforskeeg";
solve(s);
return 0;
}
Java
import java.util.ArrayList;
import java.util.Collections;
public class Main {
// Function to compute the optimized Prefix Function of a
// string in O(N) time
static ArrayList<Long> prefixFunction(String s) {
int n = s.length();
ArrayList<Long> pi = new ArrayList<>(Collections.nCopies(n, 0L));
for (int i = 1; i < n; i++) {
long j = pi.get(i - 1);
while (j > 0 && s.charAt(i) != s.charAt((int) j))
j = pi.get((int) (j - 1));
if (s.charAt(i) == s.charAt((int) j))
j++;
pi.set(i, j);
}
return pi;
}
// Function to find the length of the longest palindromic
// prefix (or suffix) using Prefix Function
static long longestPalindromicPrefix(String str) {
String temp = str + '?';
StringBuilder reversedStr = new StringBuilder(str).reverse();
temp += reversedStr;
int n = temp.length();
ArrayList<Long> lps = prefixFunction(temp);
return lps.get(n - 1);
}
// Function to solve the problem and print the modified string
static void solve(String s) {
int n = s.length();
int i = 0, j = n - 1;
// Find the mismatched characters from the beginning and
// end of the string
while (i <= j) {
if (s.charAt(i) != s.charAt(j))
break;
i++;
j--;
}
// If the entire string is a palindrome, no modification needed
if (i > j) {
System.out.println(s);
return;
}
// Length of the common prefix and suffix
int l = i;
// Extract the substring between the mismatched characters
StringBuilder t1 = new StringBuilder();
for (int z = i; z <= j; z++)
t1.append(s.charAt(z));
// Create the reverse of the substring
StringBuilder t2 = new StringBuilder(t1).reverse();
// Find the length of the longest palindromic prefix and suffix
long x = longestPalindromicPrefix(t1.toString());
long y = longestPalindromicPrefix(t2.toString());
// Print the modified string by removing the minimum size
// substring to make it palindromic
for (int k = 0; k < l; k++)
System.out.print(s.charAt(k));
if (x > y)
for (int k = l; k < l + x; k++)
System.out.print(s.charAt(k));
else
for (int k = (n - l) - (int) y; k < (n - l); k++)
System.out.print(s.charAt(k));
for (int k = (n - l); k < n; k++)
System.out.print(s.charAt(k));
System.out.println();
}
// Driver Code
public static void main(String[] args) {
String s = "geeksforskeeg";
solve(s);
}
}
Python
import sys
def prefix_function(s):
"""
Function to compute the optimized Prefix Function of a string in O(N) time.
"""
n = len(s)
pi = [0] * n
j = 0
for i in range(1, n):
while j > 0 and s[i] != s[j]:
j = pi[j - 1]
if s[i] == s[j]:
j += 1
pi[i] = j
return pi
def longest_palindromic_prefix(s):
"""
Function to find the length of the longest palindromic prefix (or suffix) using Prefix Function.
"""
temp = s + '?'
reversed_str = s[::-1]
temp += reversed_str
n = len(temp)
lps = prefix_function(temp)
return lps[-1]
def solve(s):
"""
Function to solve the problem and print the modified string.
"""
n = len(s)
i, j = 0, n - 1
# Find the mismatched characters from the beginning and end of the string
while i <= j:
if s[i] != s[j]:
break
i += 1
j -= 1
# If the entire string is a palindrome, no modification needed
if i > j:
sys.stdout.write(s)
return
# Length of the common prefix and suffix
l = i
# Extract the substring between the mismatched characters
t1 = s[i:j + 1]
# Create the reverse of the substring
t2 = t1[::-1]
# Find the length of the longest palindromic prefix and suffix
x = longest_palindromic_prefix(t1)
y = longest_palindromic_prefix(t2)
# Print the modified string by removing the minimum size
# substring to make it palindromic
sys.stdout.write(s[:l])
if x > y:
sys.stdout.write(s[l:l + x])
else:
sys.stdout.write(s[n - l - y:n - l])
sys.stdout.write(s[n - l:] + '\n')
# Driver Code
if __name__ == "__main__":
s = "geeksforskeeg"
solve(s)
JavaScript
// Function to compute the optimized Prefix Function of a string in O(N) time
function prefixFunction(s) {
const n = s.length;
const pi = new Array(n).fill(0);
for (let i = 1; i < n; i++) {
let j = pi[i - 1];
while (j > 0 && s.charAt(i) !== s.charAt(j))
j = pi[j - 1];
if (s.charAt(i) === s.charAt(j))
j++;
pi[i] = j;
}
return pi;
}
// Function to find the length of the longest palindromic prefix (or suffix) using Prefix Function
function longestPalindromicPrefix(str) {
const temp = str + '?';
const reversedStr = str.split('').reverse().join('');
const tempReversed = temp + reversedStr;
const n = tempReversed.length;
const lps = prefixFunction(tempReversed);
return lps[n - 1];
}
// Function to solve the problem and print the modified string
function solve(s) {
const n = s.length;
let i = 0, j = n - 1;
// Find the mismatched characters from the beginning and end of the string
while (i <= j) {
if (s.charAt(i) !== s.charAt(j))
break;
i++;
j--;
}
// If the entire string is a palindrome, no modification needed
if (i > j) {
console.log(s);
return;
}
// Length of the common prefix and suffix
const l = i;
// Extract the substring between the mismatched characters
const t1 = s.substring(i, j + 1);
// Create the reverse of the substring
const t2 = t1.split('').reverse().join('');
// Find the length of the longest palindromic prefix and suffix
const x = longestPalindromicPrefix(t1);
const y = longestPalindromicPrefix(t2);
// Print the modified string by removing the minimum size substring to make it palindromic
let modifiedString = s.substring(0, l);
if (x > y)
modifiedString += s.substring(l, l + x);
else
modifiedString += s.substring(n - l - y, n - l);
modifiedString += s.substring(n - l);
console.log(modifiedString);
}
// Driver Code
const s = "geeksforskeeg";
solve(s);
Time Complexity:Â O(N), where N is the length of the given string.
Auxiliary Space:Â O(N)
Similar Reads
Minimum number of palindromic subsequences to be removed to empty a binary string
Given a binary string, count minimum number of subsequences to be removed to make it an empty string. Examples : Input: str[] = "10001" Output: 1 Since the whole string is palindrome, we need only one removal. Input: str[] = "10001001" Output: 2 We can remove the middle 1 as first removal, after fir
6 min read
Minimum number of steps needed to remove the substring K from given string
Given a binary string S, and a substring K, the task is to find the minimum no of steps required to flip the characters in a binary string such that it doesn't contain the given substring K. Note: In one step we can change 0 to 1 or vice versa.Examples: Input: S = "0111011", K = "011" Output: 2 Expl
5 min read
Minimum steps to delete a string after repeated deletion of palindrome substrings
Given a string str, containing only digits from '0' to '9'. Your task is to find the minimum number of operations required to delete all the digits of string, where in each operation we can delete a palindromic substring. Note: After deleting the substring, the remaining parts are concatenated. Exam
15+ min read
Return a Palindromic String after removing minimum length Prefix from given String
Given a string B, the task is to find the minimum length prefix of the string which, when removed and added to the end of the string, will make the string a palindrome. Return the palindromic string. If no such string exists, we need to determine that. Examples: Input: "aabb"Output: "abba"Explanatio
5 min read
Minimum number of characters to be replaced to make a given string Palindrome
Given string str, the task is to find the minimum number of characters to be replaced to make a given string palindrome. Replacing a character means replacing it with any single character in the same position. We are not allowed to remove or add any characters. If there are multiple answers, print t
5 min read
Minimum characters to be replaced to make a string concatenation of a K-length palindromic string
Given a string S of size N and a positive integer K ( where N % K = 0), the task is to find the minimum number of characters required to be replaced such that the string is K-periodic and the K-length periodic string must be a palindrome. Examples: Input: S = "abaaba", K = 3Output: 0Explanation: The
11 min read
Minimum length of substring whose rotation generates a palindromic substring
Given a string str, the task is to find the minimum length of substring required to rotate that generates a palindromic substring from the given string. Examples: Input: str = "abcbd" Output: 0 Explanation: No palindromic substring can be generated. There is no repeated character in the string. Inpu
7 min read
Make a palindromic string from given string
Given a string S consisting of lower-case English alphabets only, we have two players playing the game. The rules are as follows: The player can remove any character from the given string S and write it on paper on any side(left or right) of an empty string.The player wins the game, if at any move h
7 min read
Minimum characters to be replaced in Ternary string to remove all palindromic substrings for Q queries
Given a ternary string S of length N containing only '0', '1' and '2' characters and Q queries containing a range of indices [L, R], the task for each query [L, R] is to find the minimum number of characters to convert to either '0', '1' or '2' such that there exists no palindromic substring of leng
11 min read
Minimum substring removals required to make all remaining characters of a string same
Given a string str of length N, the task is to find the minimum number of substrings required to be removed to make all the remaining characters of the string same. Note: The substring to be removed must not contain the last remaining character in the string. Examples: Input: str = "ACBDAB" Output:
7 min read