Minimum size Subarray with maximum sum in non-increasing order
Last Updated :
19 May, 2021
Given an array arr, the task is to find a subarray of the array elements whose sum is strictly greater than the rest of the elements. The size of the subarray should be minimum and the sum should be maximum and it must be in non-increasing order.
Examples:
Input: arr = [7, 6, 13, 12, 11]
Output: 13 12
Explanation:
The subarray [13, 12] and [13, 11] are minimal such that the sum of their elements is strictly greater than the rest of the elements. However the subarray [13, 12] has the maximum total sum of its elements and hence it is returned in non-increasing order.
Input: arr = [8]
Output: 8
Approach:
- Initially we will sort the array arr and define a vector named A. Now we will first calculate the sum of whole array and then iterate the whole loop from the rear side while updating the temp consecutively. The loop runs until temp becomes zero.
- Actually what happens while iterating the loop from the rear side is that when we iterate the loop from the rear side we are considering the maximum values. Hence we can say that we can reach the target condition in a lesser amount of time and also by taking fewer variables.
- Now as loop runs we keep on updating the value of temp by just adding nums[i] to it and also adding nums[i] to the vector A. At last we return the vector A which represents the output result what we want.
Below is the implementation of the above approach:
C++
// C++ program to find the Minimum size Subarray
// with maximum sum in non-increasing order
#include <bits/stdc++.h>
using namespace std;
// Function to find the Minimum size Subarray
void minSet(vector<int>& nums)
{
vector<int> A;
// sort numbers in descending order
sort(nums.begin(), nums.end());
// get total sum of the given array.
int sum = 0;
for (int i = 0; i < nums.size(); i++)
sum += nums[i];
int temp = 0;
// Loop until the sum of numbers
// is greater than sum/2
for (int i = nums.size() - 1;
i >= 0 && temp <= sum / 2;
i--) {
A.push_back(nums[i]);
temp += nums[i];
}
// Print the Minimum size Subarray
for (int i = 0; i < A.size(); i++)
cout << A[i] << " ";
}
// Driver code
int main()
{
vector<int> vec
= { 7, 6, 13, 13, 12, 11 };
minSet(vec);
return 0;
}
Java
// Java program to find the Minimum size Subarray
// with maximum sum in non-increasing order
import java.util.*;
class GFG {
// Function to find the Minimum size Subarray
static void minSet(ArrayList<Integer> nums) {
ArrayList<Integer> A = new ArrayList<Integer> ();
// sort numbers in descending order
Collections.sort(nums);
// get total sum of the given array.
int sum = 0;
for (int i = 0; i<nums.size(); i++)
sum += nums.get(i);
int temp = 0;
// Loop until the sum of numbers
// is greater than sum/2
for (int i = nums.size() - 1;
i >= 0 && temp<= sum / 2;
i--) {
A.add(nums.get(i));
temp += nums.get(i);
}
// Print the Minimum size Subarray
for (int i = 0; i<A.size(); i++)
System.out.print(A.get(i) + " ");
}
// Driver Code
public static void main(String[] args) {
ArrayList<Integer> gfg = new ArrayList<Integer> ();
gfg.add(7);
gfg.add(6);
gfg.add(13);
gfg.add(13);
gfg.add(12);
gfg.add(11);
// Function calling
minSet(gfg);
}
}
// This code is contributed by rutvik_56
Python3
# Python3 program to find the Minimum size Subarray
# with maximum sum in non-increasing order
# Function to find the Minimum size Subarray
def minSet(nums) :
A = []
# sort numbers in descending order
nums.sort()
# get total sum of the given array.
sum = 0
for i in range(0,len(nums)):
sum += nums[i]
temp = 0
# Loop until the sum of numbers
# is greater than sum/2
for i in range(len(nums)-1, -1, -1):
if(temp > sum / 2):
break
A.append(nums[i])
temp += nums[i]
# Print the Minimum size Subarray
for i in range(0, len(A)):
print(A[i], end = ' ')
# Driver code
vec = [ 7, 6, 13, 13, 12, 11 ]
minSet(vec);
# This code is contributed by Sanjit_Prasad
C#
// C# program to find the Minimum size Subarray
// with maximum sum in non-increasing order
using System;
using System.Collections.Generic;
class GFG {
// Function to find the Minimum size Subarray
static void minSet(List<int> nums) {
List<int> A = new List<int> ();
// sort numbers in descending order
nums.Sort();
// get total sum of the given array.
int sum = 0;
for (int i = 0; i < nums.Count; i++)
sum += nums[i];
int temp = 0;
// Loop until the sum of numbers
// is greater than sum/2
for (int i = nums.Count - 1;
i >= 0 && temp<= sum / 2;
i--) {
A.Add(nums[i]);
temp += nums[i];
}
// Print the Minimum size Subarray
for (int i = 0; i<A.Count; i++)
Console.Write(A[i] + " ");
}
// Driver Code
public static void Main(String[] args) {
List<int> gfg = new List<int> ();
gfg.Add(7);
gfg.Add(6);
gfg.Add(13);
gfg.Add(13);
gfg.Add(12);
gfg.Add(11);
// Function calling
minSet(gfg);
}
}
// This code is contributed by sapnasingh4991
JavaScript
<script>
// Javascript program to find the Minimum size Subarray
// with maximum sum in non-increasing order
// Function to find the Minimum size Subarray
function minSet(nums)
{
var A = [];
// sort numbers in descending order
nums.sort((a,b)=>a-b);
// get total sum of the given array.
var sum = 0;
for (var i = 0; i < nums.length; i++)
sum += nums[i];
var temp = 0;
// Loop until the sum of numbers
// is greater than sum/2
for (var i = nums.length - 1;
i >= 0 && temp <= sum / 2;
i--) {
A.push(nums[i]);
temp += nums[i];
}
// Print the Minimum size Subarray
for (var i = 0; i < A.length; i++)
document.write( A[i] + " ");
}
// Driver code
var vec
= [7, 6, 13, 13, 12, 11];
minSet(vec);
</script>
Time Complexity: O(N * log N)
Auxiliary Space Complexity: O(N)
Similar Reads
Find maximum (or minimum) sum of a subarray of size k Given an array of integers and a number k, find the maximum sum of a subarray of size k. Examples: Input : arr[] = {100, 200, 300, 400}, k = 2Output : 700Input : arr[] = {1, 4, 2, 10, 23, 3, 1, 0, 20}, k = 4 Output : 39Explanation: We get maximum sum by adding subarray {4, 2, 10, 23} of size 4.Input
14 min read
Maximize non decreasing Array size by replacing Subarray with sum Given an array arr[] of size N. In one operation only one subarray can be selected and replaced with the sum of the subarray. The task is to find the maximum size of the array after making it non-decreasing.Examples:Input: N = 5, arr[] = {5, 1, 6, 6, 6}Output: 4Explanation: maximum size non-decreasi
15+ min read
Find Maximum Sum Strictly Increasing Subarray Given an array of positive integers. Find the maximum sum of strictly increasing subarrays. Note that this problem is different from maximum subarray sum and maximum sum increasing subsequence problems. Examples: Input : arr[] = {1, 2, 3, 2, 5, 1, 7}Output : 8Explanation : Some Strictly increasing s
7 min read
Minimize the maximum subarray sum with 1s and -2s Given two integers X and Y. X and Y represent the frequency of elements 1 and -2 you have. You have to arrange all elements such that the maximum sum over all subarrays is minimized, and then find the maximum subarray sum of such rearrangement. Examples: Input: X = 1, Y = 1Output: 1Explanation: X =
5 min read
Count maximum non-overlapping subarrays with given sum Given an array arr[] consisting of N integers and an integer target, the task is to find the maximum number of non-empty non-overlapping subarrays such that the sum of array elements in each subarray is equal to the target. Examples: Input: arr[] = {2, -1, 4, 3, 6, 4, 5, 1}, target = 6Output: 3Expla
7 min read