Open In App

Minimum number possible such that it has X digits and it grows Y times by rotation

Last Updated : 25 Feb, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given two positive integers X and Y. The task is to find the minimum possible number such that the number has X decimal digits & it grows Y times after moving its last digit to first

Examples: 

Input: X = 6, Y = 5 
Output: 142857
Explanation: Following are the operations performed to get the desired result.
Take last digit of 142857 i.e. 7 and put it forward at the beginning the number becomes 714285. 
Which is equal to 142857 * Y = 142857 * 5 = 714285.
Therefore, the number if 714285 which is minimum possible. 

Input: X = 1, Y = 2 
Output: -1
Explanation: The number that consists of a single digit cannot stay what it is when multiplied by 2 so no minimum number possible in this case.

 

Approach: This solution to this problem is implementation-based. Follow the steps below to solve the given problem. 

  • Declare a vector num to store the number formed.
  • Declare and initialize a boolean variable possible = false, to keep track of whether the number can be formed or not.
  • Try to form X digit number with the required condition by Iterating for all the possible numbers using.
  • If the number can be formed at any point set possible = true and break from the loop.
  • At last, check if possible = true:
    • If Yes, print the number stored in num.
    • Else No, such number found so return -1.
  • Print the final result.

Below is the implementation of the above approach:

C++
// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;

// Function to find minimum number
void findmin(int X, int Y)
{
    // Additional space required to form a number
    vector<int> num;

    int a, b;
    bool possible = 0;

    // Forming a number
    for (int j = Y; j < 10; j++) {
        num.push_back(j);
        a = 0;

        // Forming X digit number
        for (int i = 0; i < X; i++) {
            b = a + num[i] * Y;
            a = b / 10;
            num.push_back(b - 10 * a);
        }

        if (num[X] == j && a == 0) {
            possible = 1;
            break;
        }
    }

    if (possible) {

        // Number can be formed
        for (int i = X - 1; i >= 0; i--) {
            cout << num[i];
        }
    }

    // There is no such number possible
    else
        cout << "-1";
}

// Driver code
int main()
{
    int X = 6;
    int Y = 4;

    // Function Call
    findmin(X, Y);

    return 0;
}
Java
// Java program for above approach
import java.util.ArrayList;

class GFG {

  // Function to find minimum number
  static void findmin(int X, int Y) {

    // Additional space required to form a number
    ArrayList<Integer> num = new ArrayList<Integer>();

    int a = 0, b = 0;
    boolean possible = false;

    // Forming a number
    for (int j = Y; j < 10; j++) {
      num.add(j);
      a = 0;

      // Forming X digit number
      for (int i = 0; i < X; i++) {
        b = a + (int) num.get(i) * Y;
        a = b / 10;
        num.add(b - 10 * a);
      }

      if ((int) num.get(X) == j && a == 0) {
        possible = true;
        break;
      }
    }

    if (possible) {

      // Number can be formed
      for (int i = X - 1; i >= 0; i--) {
        System.out.print(num.get(i));
      }
    }

    // There is no such number possible
    else
      System.out.print("-1");
  }

  // Driver code
  public static void main(String args[]) {
    int X = 6;
    int Y = 4;

    // Function Call
    findmin(X, Y);

  }
}

// This code is contributed by Saurabh Jaiswal
Python3
# python3 program for above approach

# Function to find minimum number
def findmin(X, Y):

    # Additional space required to form a number
    num = []

    a, b = 0, 0
    possible = 0

    # Forming a number
    for j in range(Y, 10):
        num.append(j)
        a = 0

        # Forming X digit number
        for i in range(0, X):
            b = a + num[i] * Y
            a = b // 10
            num.append(b - 10 * a)

        if (num[X] == j and a == 0):
            possible = 1
            break

    if (possible):

        # Number can be formed
        for i in range(X - 1, -1, -1):
            print(num[i], end="")

    # There is no such number possible
    else:
        print("-1")

# Driver code
if __name__ == "__main__":

    X = 6
    Y = 4

    # Function Call
    findmin(X, Y)

# This code is contributed by rakeshsahni
C#
// C# program for above approach
using System;
using System.Collections;

class GFG
{
  
  // Function to find minimum number
  static void findmin(int X, int Y)
  {
    
    // Additional space required to form a number
    ArrayList num = new ArrayList();

    int a = 0, b = 0;
    bool possible = false;

    // Forming a number
    for (int j = Y; j < 10; j++) {
      num.Add(j);
      a = 0;

      // Forming X digit number
      for (int i = 0; i < X; i++) {
        b = a + (int)num[i] * Y;
        a = b / 10;
        num.Add(b - 10 * a);
      }

      if ((int)num[X] == j && a == 0) {
        possible = true;
        break;
      }
    }

    if (possible) {

      // Number can be formed
      for (int i = X - 1; i >= 0; i--) {
        Console.Write(num[i]);
      }
    }

    // There is no such number possible
    else
      Console.Write("-1");
  }

  // Driver code
  public static void Main()
  {
    int X = 6;
    int Y = 4;

    // Function Call
    findmin(X, Y);

  }
}

// This code is contributed by Samim Hossain Mondal.
JavaScript
  <script>
        // JavaScript code for the above approach

        // Function to find minimum number
        function findmin(X, Y) {
            // Additional space required to form a number
            let num = [];

            let a, b;
            let possible = 0;

            // Forming a number
            for (let j = Y; j < 10; j++) {
                num.push(j);
                a = 0;

                // Forming X digit number
                for (let i = 0; i < X; i++) {
                    b = a + num[i] * Y;
                    a = Math.floor(b / 10);
                    num.push(b - 10 * a);
                }

                if (num[X] == j && a == 0) {
                    possible = 1;
                    break;
                }
            }

            if (possible) {

                // Number can be formed
                for (let i = X - 1; i >= 0; i--) {
                    document.write(num[i]);
                }
            }

            // There is no such number possible
            else
                document.write("-1")
        }

        // Driver code

        let X = 6;
        let Y = 4;

        // Function Call
        findmin(X, Y);


       // This code is contributed by Potta Lokesh
    </script>

 
 


Output
102564


 

Time Complexity: O(X*Y) 
Auxiliary Space: O(X)


 


Next Article
Article Tags :
Practice Tags :

Similar Reads