Minimum number of prefix reversals to sort permutation of first N numbers
Last Updated :
08 Dec, 2021
Given N numbers that have a permutation of first N numbers. In a single operation, any prefix can be reversed. The task is to find the minimum number of such operations such that the numbers in the array are in increasing order.
Examples:
Input : a[] = {3, 1, 2}
Output : 2
Step1: Reverse the complete array a, a[] = {2, 1, 3}
Step2: Reverse the prefix(0-1) in s, a[] = {1, 2, 3}
Input : a[] = {1, 2, 4, 3}
Output : 3
Step1: Reverse the complete array a, a[] = {3, 4, 2, 1}
Step2: Reverse the prefix(0-1) in s, a[] = {4, 3, 2, 1}
Step3: Reverse the complete array a, a[] = {1, 2, 3, 4}
The approach to solve this problem is to use BFS.
- Encode the given numbers in a string. Sort the array and encode it into a string destination.
- Then do a BFS from the initial permutation. Each time, check all permutations induced by reversing a prefix of current permutation.
- If it is not visited, put it into the queue with the count of reversals done.
- When the permutation of the encoded string is same as the destination string, return the numbers of reversals required to reach here.
- That is, all permutations of strings are done and the minimal of those is returned as the answer.
Below is the implementation of the above approach:
C++
// C++ program to find
// minimum number of prefix reversals
// to sort permutation of first N numbers
#include <bits/stdc++.h>
using namespace std;
// Function to return the minimum prefix reversals
int minimumPrefixReversals(int a[], int n)
{
string start = "";
string destination = "", t, r;
for (int i = 0; i < n; i++) {
// converts the number to a character
// and add to string
start += to_string(a[i]);
}
sort(a, a + n);
for (int i = 0; i < n; i++) {
destination += to_string(a[i]);
}
// Queue to store the pairs
// of string and number of reversals
queue<pair<string, int> > qu;
pair<string, int> p;
// Initially push the original string
qu.push(make_pair(start, 0));
// if original string is the destination string
if (start == destination) {
return 0;
}
// iterate till queue is empty
while (!qu.empty()) {
// pair at the top
p = qu.front();
// string
t = p.first;
// pop the top-most element
qu.pop();
// perform prefix reversals for all index and push
// in the queue and check for the minimal
for (int j = 2; j <= n; j++) {
r = t;
// reverse the string till prefix j
reverse(r.begin(), r.begin() + j);
// if after reversing the string from first i index
// it is the destination
if (r == destination) {
return p.second + 1;
}
// push the number of reversals for string r
qu.push(make_pair(r, p.second + 1));
}
}
}
// Driver Code
int main()
{
int a[] = { 1, 2, 4, 3 };
int n = sizeof(a) / sizeof(a[0]);
// Calling function
cout << minimumPrefixReversals(a, n);
return 0;
}
Java
// Java program to find minimum
// number of prefix reversals to
// sort permutation of first N numbers
import java.util.*;
public class Main
{
// function to find minimum prefix reversal through BFS
public static int minimumPrefixReversals(int[] a)
{
// size of array
int n = a.length;
// string for initial and goal nodes
String start = "", destination = "";
// string for manipulation in while loop
String original = "",modified = "";
// node to store temporary values from front of queue
Node temp = null;
// create the starting string
for (int i = 0; i < n; i++)
start += a[i];
// sort the array and prepare final destination string
Arrays.sort(a);
for (int i = 0; i < n; i++)
destination += a[i];
// this queue will store all the BFS siblings
Queue<Node> q = new LinkedList<>();
// place the starting node in queue
q.add(new Node(start, 0));
//base case:- if array is already sorted
if (start == destination)
return 0;
// loop until the size of queue is empty
while (q.size() != 0)
{
// put front node of queue in temporary variable
temp = q.poll();
// store the original string at this step
original = temp.string;
for (int j = 2; j <= n; j++)
{
// modified will be used to generate all
// manipulation of original string
// like if original = 1342
// modified = 3142 , 4312 , 2431
modified = original;
// generate the permutation by reversing
modified = reverse (modified , j);
if (modified.equals(destination))
{
// if string match then return
// the height of the current node
return temp.steps + 1;
}
// else put this node into queue
q.add(new Node(modified,temp.steps + 1));
}
}
// if no case match then default value
return Integer.MIN_VALUE;
}
// function to reverse the string upto an index
public static String reverse (String s , int index)
{
char temp []= s.toCharArray();
int i = 0;
while (i < index)
{
char c = temp[i];
temp[i] = temp[index-1];
temp[index-1] = c;
i++;index--;
}
return String.valueOf(temp);
}
// Driver code
public static void main(String []args)
{
int a[] = new int []{1,2,4,3};
System.out.println(minimumPrefixReversals(a));
}
// Node class to store a combined set of values
static class Node
{
public String string ;
public int steps;
public Node(String string,int steps)
{
this.string = string;
this.steps= steps;
}
}
}
// This code is contributed by Sparsh Singhal
C#
// C# program to find minimum
// number of prefix reversals to
// sort permutation of first N numbers
using System;
using System.Collections.Generic;
class GFG
{
// Node class to store a combined set of values
public class Node
{
public String str;
public int steps;
public Node(String str,int steps)
{
this.str = str;
this.steps= steps;
}
}
// function to find minimum prefix reversal through BFS
public static int minimumPrefixReversals(int[] a)
{
// size of array
int n = a.Length;
// string for initial and goal nodes
String start = "", destination = "";
// string for manipulation in while loop
String original = "", modified = "";
// node to store temporary values
// from front of queue
Node temp = null;
// create the starting string
for (int i = 0; i < n; i++)
start += a[i];
// sort the array and prepare
// final destination string
Array.Sort(a);
for (int i = 0; i < n; i++)
destination += a[i];
// this queue will store all the BFS siblings
Queue<Node> q = new Queue<Node>();
// place the starting node in queue
q.Enqueue(new Node(start, 0));
//base case:- if array is already sorted
if (start == destination)
return 0;
// loop until the size of queue is empty
while (q.Count != 0)
{
// put front node of queue in temporary variable
temp = q.Dequeue();
// store the original string at this step
original = temp.str;
for (int j = 2; j <= n; j++)
{
// modified will be used to generate all
// manipulation of original string
// like if original = 1342
// modified = 3142 , 4312 , 2431
modified = original;
// generate the permutation by reversing
modified = reverse (modified , j);
if (modified.Equals(destination))
{
// if string match then return
// the height of the current node
return temp.steps + 1;
}
// else put this node into queue
q.Enqueue(new Node(modified, temp.steps + 1));
}
}
// if no case match then default value
return int.MinValue;
}
// function to reverse the string upto an index
public static String reverse (String s, int index)
{
char []temp = s.ToCharArray();
int i = 0;
while (i < index)
{
char c = temp[i];
temp[i] = temp[index - 1];
temp[index - 1] = c;
i++;index--;
}
return String.Join("", temp);
}
// Driver code
public static void Main(String []args)
{
int []a = new int []{1, 2, 4, 3};
Console.WriteLine(minimumPrefixReversals(a));
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
class Node
{
constructor(string,steps)
{
this.string = string;
this.steps= steps;
}
}
function minimumPrefixReversals(a)
{
// size of array
let n = a.length;
// string for initial and goal nodes
let start = "", destination = "";
// string for manipulation in while loop
let original = "",modified = "";
// node to store temporary values from front of queue
let temp = null;
// create the starting string
for (let i = 0; i < n; i++)
start += a[i];
// sort the array and prepare final destination string
a.sort(function(a,b){return a-b;});
for (let i = 0; i < n; i++)
destination += a[i];
// this queue will store all the BFS siblings
let q = [];
// place the starting node in queue
q.push(new Node(start, 0));
//base case:- if array is already sorted
if (start == destination)
return 0;
// loop until the size of queue is empty
while (q.length != 0)
{
// put front node of queue in temporary variable
temp = q.shift();
// store the original string at this step
original = temp.string;
for (let j = 2; j <= n; j++)
{
// modified will be used to generate all
// manipulation of original string
// like if original = 1342
// modified = 3142 , 4312 , 2431
modified = original;
// generate the permutation by reversing
modified = reverse (modified , j);
if (modified == (destination))
{
// if string match then return
// the height of the current node
return temp.steps + 1;
}
// else put this node into queue
q.push(new Node(modified,temp.steps + 1));
}
}
// if no case match then default value
return Number.MIN_VALUE;
}
function reverse (s,index)
{
let temp = s.split("");
let i = 0;
while (i < index)
{
let c = temp[i];
temp[i] = temp[index-1];
temp[index-1] = c;
i++;index--;
}
return (temp).join("");
}
let a = [1, 2, 4, 3];
document.write(minimumPrefixReversals(a));
// This code is contributed by rag2127
</script>
Python3
# Python3 program to find
# minimum number of prefix reversals
# to sort permutation of [0] N numbers
from queue import Queue
# Function to return the minimum prefix reversals
def minimumPrefixReversals( a, n):
start = ""
destination = ""
for i in range(n):
# converts the number to a character
# and add to
start += str(a[i])
a.sort()
for i in range(n):
destination += str(a[i])
# Queue to store the pairs
# of and number of reversals
qu=Queue()
# Initially push the original
qu.put((start, 0))
# if original is the destination
if (start == destination) :
return 0
# iterate till queue is empty
while qu.not_empty :
# pair at the top
p = qu.get()
#
t = p[0]
# perform prefix reversals for all index and push
# in the queue and check for the minimal
for j in range(2,n+1) :
r = t
# reverse the till prefix j
tmpR=list(r)
tmpR[:j]=tmpR[j-1::-1]
r=''.join(tmpR)
# if after reversing the from [0] i index
# it is the destination
if (r == destination) :
return p[1] + 1
# push the number of reversals for r
qu.put((r, p[1] + 1))
# Driver Code
if __name__ == '__main__':
a = [ 1, 2, 4, 3]
n = len(a)
# Calling function
print(minimumPrefixReversals(a, n))
Time Complexity: O(N! * N2)
Auxiliary Space: O(N!)
Similar Reads
Minimum number of swaps required to sort an array of first N number Given an array arr[] of distinct integers from 1 to N. The task is to find the minimum number of swaps required to sort the array. Example: Input: arr[] = { 7, 1, 3, 2, 4, 5, 6 } Output: 5 Explanation: i arr swap (indices) 0 [7, 1, 3, 2, 4, 5, 6] swap (0, 3) 1 [2, 1, 3, 7, 4, 5, 6] swap (0, 1) 2 [1,
5 min read
Minimum number of operations required to make a permutation of first N natural numbers equal Given an array A[] of size N, containing a permutation of first N natural numbers and an integer K, the task is to find the minimum number of operations required to make all array elements equal by selecting K (1 < K ⤠N) consecutive array elements and replacing them with the minimum of the selec
6 min read
Increasing permutation of first N natural numbers Given a permutation {P1, P2, P3, ..... PN) of first N natural numbers. The task is to check if it is possible to make the permutation increasing by swapping any two numbers. If it is already in increasing order, do nothing. Examples: Input: a[] = {5, 2, 3, 4, 1} Output: Yes Swap 1 and 5Input: a[] =
4 min read
Minimum steps to convert an Array into permutation of numbers from 1 to N Given an array arr of length N, the task is to count the minimum number of operations to convert given sequence into a permutation of first N natural numbers (1, 2, ...., N). In each operation, increment or decrement an element by one.Examples: Input: arr[] = {4, 1, 3, 6, 5} Output: 4 Apply decremen
4 min read
Sort a permutation of first N Natural Numbers by swapping pairs satisfying given conditions Given an array p[] of size N representing a permutation of first N natural numbers, where N is an even number, the task is to sort the array by taking a pair of indices a, b and swap p[a] and p[b] in each operation, where 2 * |a - b| ? N. Print the pairs of indices swapped in each operation. Example
13 min read