Minimum number of intervals to cover the target interval
Last Updated :
23 Jul, 2025
Given an array A[] consisting of N intervals and a target interval X, the task is to find the minimum number of intervals from the given array A[] such that they entirely cover the target interval. If there doesn't exist any such interval then print "-1".
Examples:
Input: A[] = {{1, 3}, {2, 4}, {2, 10}, {2, 3}, {1, 1}}, X = {1, 10}
Output: 2
Explanation:From the given 5 intervals, {1, 3} and {2, 10} can be selected. Therefore, the points in the range [1, 3] are covered by the interval {1, 3} and the points in the range [4, 10] are covered by the interval {2, 10}.
Input: A[] = {{2, 6}, {7, 9}, {3, 5}, {6, 10}}, X = {1, 4}
Output: -1
Explanation: There exist no set of intervals in the given array A such that they cover the entire target interval.
Approach: The given problem can be solved by using a Greedy Approach. It can be observed that the most optimal choice of the interval from a point p in the target range is the interval (u, v) such that u <= p and v is the maximum possible. Using this observation, follow the steps below to solve the given problem:
- Sort the given array A[] in increasing order of the starting points of the intervals.
- Create a variable start and initialize it with the starting point of the target interval X. It stores the starting point of the currently selected interval. Similarly, the variable end stores the ending point of the current variable. Initialize it with start - 1.
- Create a variable cnt, which stores the count of the number of selected intervals.
- Iterate through the given array A[] using a variable i.
- If the starting point of the ith interval <= start, update the value of end with the max(end, ending point of the ith interval), else set start = end and increment the value of cnt by 1.
- If the starting point of the ith interval > end or the value of end is already greater than the ending point of the target interval, break the loop.
- Return -1 if the value of end < ending point of target interval, else return the value of cnt.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the minimum number
// of intervals in the array A[] to
// cover the entire target interval
int minimizeSegment(vector<pair<int, int> > A,
pair<int, int> X)
{
// Sort the array A[] in increasing
// order of starting point
sort(A.begin(), A.end());
// Insert a pair of INT_MAX to
// prevent going out of bounds
A.push_back({ INT_MAX, INT_MAX });
// Stores start of current interval
int start = X.first;
// Stores end of current interval
int end = X.first - 1;
// Stores the count of intervals
int cnt = 0;
// Iterate over all the intervals
for (int i = 0; i < A.size();) {
// If starting point of current
// index <= start
if (A[i].first <= start) {
end = max(A[i++].second, end);
}
else {
// Update the value of start
start = end;
// Increment the value
// of count
++cnt;
// If the target interval is
// already covered or it is
// not possible to move
// then break the loop
if (A[i].first > end
|| end >= X.second) {
break;
}
}
}
// If the entire target interval
// is not covered
if (end < X.second) {
return -1;
}
// Return Answer
return cnt;
}
// Driver Code
int main()
{
vector<pair<int, int> > A = {
{ 1, 3 }, { 2, 4 }, { 2, 10 }, { 2, 3 }, { 1, 1 }
};
pair<int, int> X = { 1, 10 };
cout << minimizeSegment(A, X);
return 0;
}
Java
// Java program for the above approach
import java.util.ArrayList;
import java.util.Comparator;
class GFG
{
static class Pair
{
int first;
int second;
public Pair(int f, int s)
{
this.first = f;
this.second = s;
}
}
// Function to find the minimum number
// of intervals in the array A[] to
// cover the entire target interval
public static int minimizeSegment(ArrayList<Pair> A, Pair X)
{
// Sort the array A[] in increasing
// order of starting point
final Comparator<Pair> arrayComparator = new Comparator<GFG.Pair>() {
@Override
public int compare(Pair o1, Pair o2) {
return Integer.compare(o1.first, o2.first);
}
};
A.sort(arrayComparator);
// Insert a pair of INT_MAX to
// prevent going out of bounds
A.add(new Pair(Integer.MAX_VALUE, Integer.MIN_VALUE));
// Stores start of current interval
int start = X.first;
// Stores end of current interval
int end = X.first - 1;
// Stores the count of intervals
int cnt = 0;
// Iterate over all the intervals
for (int i = 0; i < A.size();) {
// If starting point of current
// index <= start
if (A.get(i).first <= start) {
end = Math.max(A.get(i++).second, end);
} else {
// Update the value of start
start = end;
// Increment the value
// of count
++cnt;
// If the target interval is
// already covered or it is
// not possible to move
// then break the loop
if (A.get(i).first > end
|| end >= X.second) {
break;
}
}
}
// If the entire target interval
// is not covered
if (end < X.second) {
return -1;
}
// Return Answer
return cnt;
}
// Driver Code
public static void main(String args[]) {
ArrayList<Pair> A = new ArrayList<Pair>();
A.add(new Pair(1, 3));
A.add(new Pair(2, 4));
A.add(new Pair(2, 10));
A.add(new Pair(2, 3));
A.add(new Pair(1, 1));
Pair X = new Pair(1, 10);
System.out.println(minimizeSegment(A, X));
}
}
// This code is contributed by saurabh_jaiswal.
Python
# Function to find the minimum number
# of intervals in the array A[] to
# cover the entire target interval
def minimizeSegment(A, X):
# Sort the array A[] in increasing
# order of starting point
A.sort()
# Insert a pair of (float('inf'), float('inf'))
# to prevent going out of bounds
A.append((float('inf'), float('inf')))
# Stores start of current interval
start = X[0]
# Stores end of current interval
end = X[0] - 1
# Stores the count of intervals
cnt = 0
# Iterate over all the intervals
i = 0
while i < len(A):
# If starting point of current
# index <= start
if A[i][0] <= start:
end = max(A[i][1], end)
i += 1
else:
# Update the value of start
start = end
# Increment the value
# of count
cnt += 1
# If the target interval is
# already covered or it is
# not possible to move
# then break the loop
if A[i][0] > end or end >= X[1]:
break
# If the entire target interval
# is not covered
if end < X[1]:
return -1
# Return Answer
return cnt
# Driver Code
A = [
(1, 3), (2, 4), (2, 10), (2, 3), (1, 1)
]
X = (1, 10)
print(minimizeSegment(A, X))
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
public class GFG
{
public class Pair
{
public int first;
public int second;
public Pair(int f, int s) {
this.first = f;
this.second = s;
}
}
// Function to find the minimum number
// of intervals in the array []A to
// cover the entire target interval
public static int minimizeSegment(List<Pair> A, Pair X) {
// Sort the array []A in increasing
// order of starting point
A.Sort((a,b)=>a.first-b.first);
// Insert a pair of INT_MAX to
// prevent going out of bounds
A.Add(new Pair(int.MaxValue, int.MinValue));
// Stores start of current interval
int start = X.first;
// Stores end of current interval
int end = X.first - 1;
// Stores the count of intervals
int cnt = 0;
// Iterate over all the intervals
for (int i = 0; i < A.Count;) {
// If starting point of current
// index <= start
if (A[i].first <= start) {
end = Math.Max(A[i++].second, end);
} else {
// Update the value of start
start = end;
// Increment the value
// of count
++cnt;
// If the target interval is
// already covered or it is
// not possible to move
// then break the loop
if (A[i].first > end || end >= X.second) {
break;
}
}
}
// If the entire target interval
// is not covered
if (end < X.second) {
return -1;
}
// Return Answer
return cnt;
}
// Driver Code
public static void Main(String []args) {
List<Pair> A = new List<Pair>();
A.Add(new Pair(1, 3));
A.Add(new Pair(2, 4));
A.Add(new Pair(2, 10));
A.Add(new Pair(2, 3));
A.Add(new Pair(1, 1));
Pair X = new Pair(1, 10);
Console.WriteLine(minimizeSegment(A, X));
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// JavaScript Program to implement
// the above approach
// Function to find the minimum number
// of intervals in the array A[] to
// cover the entire target interval
function minimizeSegment(A,
X)
{
// Sort the array A[] in increasing
// order of starting point
A.sort(function (a, b) { return a.first - b.first; })
// Insert a pair of INT_MAX to
// prevent going out of bounds
A.push({ first: Number.MAX_VALUE, second: Number.MAX_VALUE });
// Stores start of current interval
let start = X.first;
// Stores end of current interval
let end = X.first - 1;
// Stores the count of intervals
let cnt = 0;
// Iterate over all the intervals
for (let i = 0; i < A.length;) {
// If starting point of current
// index <= start
if (A[i].first <= start) {
end = Math.max(A[i++].second, end);
}
else {
// Update the value of start
start = end;
// Increment the value
// of count
++cnt;
// If the target interval is
// already covered or it is
// not possible to move
// then break the loop
if (A[i].first > end
|| end >= X.second) {
break;
}
}
}
// If the entire target interval
// is not covered
if (end < X.second) {
return -1;
}
// Return Answer
return cnt;
}
// Driver Code
let A = [{ first: 1, second: 3 },
{ first: 2, second: 4 },
{ first: 2, second: 10 },
{ first: 2, second: 3 },
{ first: 1, second: 1 }
];
let X = { first: 1, second: 10 };
document.write(minimizeSegment(A, X));
// This code is contributed by Potta Lokesh
</script>
Time Complexity: O(N*log N)
Auxiliary Space: O(1)
Efficient Approach:
The idea is similar to Minimum number of jumps to reach end. The tricky part is how to find the starting point to just cover the `target.first`. Basically, it is a Greedy question. We can use the "sweep line" like method to build an auxiliary array to mimic the Jump Game.
Implement the following steps to solve the problem:
- Initialize variables minVal to INT_MAX and maxVal to 0.
- Iterate over each interval i in A:
- Update minVal to the minimum of minVal and i.start.
- Update maxVal to the maximum of maxVal and i.end.
- Create a count array count of size (maxVal - minVal + 1) and initialize all elements to 0.
- Iterate over each interval i in A:
- Compute the index in the count array as i.start - minVal.
- Update count[i.start - minVal] to the maximum of count[i.start - minVal] and (i.end - i.start).
- Initialize variables reach and maxReach to 0.
- Compute the indices in the count array for the target interval as targetStart = X.first - minVal and targetEnd = X.second - minVal.
- Initialize a variable i to 0.
- Iterate while i is less than or equal to targetStart:
- If i + count[i] is less than targetStart, continue to the next iteration.
- Update reach to the maximum of reach and i + count[i].
- Increment i by 1.
- Initialize a variable res to 1.
- Continue iterating while i is less than the size of the count array:
- If reach is greater than or equal to targetEnd, break out of the loop.
- Update maxReach to the maximum of maxReach and i + count[i].
- If reach is less than or equal to i:
- Update reach to maxReach.
- Increment res by 1.
- Increment i by 1.
- If reach is greater than or equal to targetEnd, return res, otherwise return -1.
Below is the implementation of the approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the minimum number
// of intervals in the array A[] to
// cover the entire target interval
int minimizeSegment(vector<pair<int, int>> A, pair<int, int> X) {
// Check if the input vector is empty
if (A.empty())
return 0;
// Find the minimum and maximum values
int minVal = INT_MAX;
int maxVal = 0;
for (auto i : A) {
minVal = min(minVal, i.first);
maxVal = max(maxVal, i.second);
}
// Create a count array to store the length
// of intervals starting at each index
vector<int> count(maxVal - minVal + 1, 0);
for (auto i : A) {
count[i.first - minVal] = max(count[i.first - minVal], i.second - i.first);
}
// Initialize variables for tracking reach
int reach = 0;
int maxReach = 0;
int targetStart = X.first - minVal;
int targetEnd = X.second - minVal;
int i = 0;
// Iterate until reaching the target start
for (; i <= targetStart; i++) {
if (i + count[i] < targetStart)
continue;
reach = max(reach, i + count[i]);
}
// Initialize result and continue iteration
int res = 1;
for (; i < count.size(); i++) {
if (reach >= targetEnd)
break;
maxReach = max(maxReach, i + count[i]);
if (reach <= i) {
reach = maxReach;
res++;
}
}
// Check if the target interval is covered
return reach >= targetEnd ? res : -1;
}
int main() {
// Input intervals and target interval
vector<pair<int, int>> A = {
{1, 3}, {2, 4}, {2, 10}, {2, 3}, {1, 1}
};
pair<int, int> X = {1, 10};
// Find the minimum number of intervals
// to cover the target interval
int result = minimizeSegment(A, X);
cout << result << endl;
return 0;
}
// This code is contributed by Chandramani Kumar
Java
import java.util.AbstractMap.SimpleEntry;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class Main {
// Function to find the minimum number of intervals to
// cover the target interval
public static int
minimizeSegment(List<SimpleEntry<Integer, Integer> > A,
SimpleEntry<Integer, Integer> X)
{
// Check if the input list is empty
if (A.isEmpty())
return 0;
// Find the minimum and maximum values
int minVal = Integer.MAX_VALUE;
int maxVal = 0;
for (SimpleEntry<Integer, Integer> interval : A) {
minVal = Math.min(minVal, interval.getKey());
maxVal = Math.max(maxVal, interval.getValue());
}
// Create a list to store the length of intervals
// starting at each index
List<Integer> count = new ArrayList<>(
Collections.nCopies(maxVal - minVal + 1, 0));
for (SimpleEntry<Integer, Integer> interval : A) {
count.set(interval.getKey() - minVal,
Math.max(count.get(interval.getKey()
- minVal),
interval.getValue()
- interval.getKey()));
}
// Initialize variables for tracking reach
int reach = 0;
int maxReach = 0;
int targetStart = X.getKey() - minVal;
int targetEnd = X.getValue() - minVal;
int i = 0;
// Iterate until reaching the target start
for (; i <= targetStart; i++) {
if (i + count.get(i) < targetStart)
continue;
reach = Math.max(reach, i + count.get(i));
}
// Initialize result and continue iteration
int res = 1;
for (; i < count.size(); i++) {
if (reach >= targetEnd)
break;
maxReach = Math.max(maxReach, i + count.get(i));
if (reach <= i) {
reach = maxReach;
res++;
}
}
// Check if the target interval is covered
return reach >= targetEnd ? res : -1;
}
public static void main(String[] args)
{
// Input intervals and target interval
List<SimpleEntry<Integer, Integer> > A
= new ArrayList<>();
A.add(new SimpleEntry<>(1, 3));
A.add(new SimpleEntry<>(2, 4));
A.add(new SimpleEntry<>(2, 10));
A.add(new SimpleEntry<>(2, 3));
A.add(new SimpleEntry<>(1, 1));
SimpleEntry<Integer, Integer> X
= new SimpleEntry<>(1, 10);
// Find the minimum number of intervals to cover the
// target interval
int result = minimizeSegment(A, X);
System.out.println(result);
}
}
Python
# Function to find the minimum number
# of intervals in the array A[] to
# cover the entire target interval
def minimizeSegment(A, X):
# Check if the A is empty
if not A:
return 0
#Find minimum and maximum value
minVal = float('inf')
maxVal = 0
for i in A:
minVal = min(minVal, i[0])
maxVal = max(maxVal, i[1])
# Create array to store the length
# of interval starting at each index
count = [0] * (maxVal - minVal + 1)
for i in A:
count[i[0] - minVal] = max(count[i[0] - minVal], i[1] - i[0])
# Initializing variables for tracking reach
reach = 0
maxReach = 0
targetStart = X[0] - minVal
targetEnd = X[1] - minVal
i = 0
# Iterate until reaching the target start
while i <= targetStart:
if i + count[i] < targetStart:
i += 1
continue
reach = max(reach, i + count[i])
i += 1
# Initialize result and continue iteration
res = 1
while i < len(count):
if reach >= targetEnd:
break
maxReach = max(maxReach, i + count[i])
if reach <= i:
reach = maxReach
res += 1
i += 1
# check if the target interval is convered.
return res if reach >= targetEnd else -1
# Input intervals and target interval
A = [
(1, 3), (2, 4), (2, 10), (2, 3), (1, 1)
]
X = (1, 10)
result = minimizeSegment(A, X)
print(result)
C#
using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
// Function to find the minimum number
// of intervals in the list A to
// cover the entire target interval
static int MinimizeSegment(List<Tuple<int, int>> A, Tuple<int, int> X)
{
// Check if the input list is empty
if (A.Count == 0)
return 0;
// Find the minimum and maximum values
int minVal = int.MaxValue;
int maxVal = 0;
foreach (var interval in A)
{
minVal = Math.Min(minVal, interval.Item1);
maxVal = Math.Max(maxVal, interval.Item2);
}
// Create a count array to store the length
// of intervals starting at each index
List<int> count = new List<int>(maxVal - minVal + 1);
count.AddRange(Enumerable.Repeat(0, maxVal - minVal + 1));
foreach (var interval in A)
{
count[interval.Item1 - minVal] = Math.Max(count[interval.Item1 - minVal], interval.Item2 - interval.Item1);
}
// Initialize variables for tracking reach
int reach = 0;
int maxReach = 0;
int targetStart = X.Item1 - minVal;
int targetEnd = X.Item2 - minVal;
int i = 0;
// Iterate until reaching the target start
for (; i <= targetStart; i++)
{
if (i + count[i] < targetStart)
continue;
reach = Math.Max(reach, i + count[i]);
}
// Initialize result and continue iteration
int res = 1;
for (; i < count.Count; i++)
{
if (reach >= targetEnd)
break;
maxReach = Math.Max(maxReach, i + count[i]);
if (reach <= i)
{
reach = maxReach;
res++;
}
}
// Check if the target interval is covered
return reach >= targetEnd ? res : -1;
}
static void Main(string[] args)
{
// Input intervals and target interval
List<Tuple<int, int>> A = new List<Tuple<int, int>>
{
Tuple.Create(1, 3), Tuple.Create(2, 4), Tuple.Create(2, 10), Tuple.Create(2, 3), Tuple.Create(1, 1)
};
Tuple<int, int> X = Tuple.Create(1, 10);
// Find the minimum number of intervals
// to cover the target interval
int result = MinimizeSegment(A, X);
Console.WriteLine(result);
Console.ReadLine();
}
}
JavaScript
function minimizeSegment(A, X) {
// Check if the input vector is empty
if (A.length === 0)
return 0;
// Find the minimum and maximum values
let minVal = Infinity;
let maxVal = 0;
for (let i = 0; i < A.length; i++) {
minVal = Math.min(minVal, A[i][0]);
maxVal = Math.max(maxVal, A[i][1]);
}
// Create a count array to store the length
// of intervals starting at each index
let count = new Array(maxVal - minVal + 1).fill(0);
for (let i = 0; i < A.length; i++) {
count[A[i][0] - minVal] = Math.max(count[A[i][0] - minVal], A[i][1] - A[i][0]);
}
// Initialize variables for tracking reach
let reach = 0;
let maxReach = 0;
let targetStart = X[0] - minVal;
let targetEnd = X[1] - minVal;
let i = 0;
// Iterate until reaching the target start
for (; i <= targetStart; i++) {
if (i + count[i] < targetStart)
continue;
reach = Math.max(reach, i + count[i]);
}
// Initialize result and continue iteration
let res = 1;
for (; i < count.length; i++) {
if (reach >= targetEnd)
break;
maxReach = Math.max(maxReach, i + count[i]);
if (reach <= i) {
reach = maxReach;
res++;
}
}
// Check if the target interval is covered
return reach >= targetEnd ? res : -1;
}
// Input intervals and target interval
let A = [
[1, 3], [2, 4], [2, 10], [2, 3], [1, 1]
];
let X = [1, 10];
let result = minimizeSegment(A, X);
console.log(result);
Time Complexity: O(N) because single traversal is beeing done whether it is of array A or count.
Auxiliary Space: O(N) as count array has been created.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem