Minimum cost required to rearrange a given array to make it equal to another given array
Last Updated :
28 Feb, 2022
Given two arrays A[] and B[] consisting of M and N integers respectively, and an integer C, the task is to find the minimum cost required to make the sequence A exactly the same as B(consists of distinct elements only) by performing the following operations on array A[]:
- Remove any element from the array with cost 0.
- Insert a new element anywhere in the array with cost C.
Examples:
Input: A[] = {1, 6, 3, 5, 10}, B[] = {3, 1, 5}, C = 2
Output: 2
Explanation:
Removing elements 1, 6, and 10 from the array costs 0. The array A[] becomes {3, 5}.
Add 1 in between 3 and 5, then the array arr[] becomes {3, 1, 5} which is the same as the array B[].
The cost of above operation is 2.
Input: A[] = {10, 5, 2, 4, 10, 5}, B[] = {5, 1, 2, 10, 4}, C = 3
Output: 6
Explanation:
Removing elements 10, 10, and 5 from the array costs 0. The array A[] becomes {5, 2, 4}.
Add element 1 and 10 in the array as {5, 1, 2, 10, 4} which is the same as the array B[].
The cost of above operation is 3*2 = 6.
Naive Approach: The simplest approach is to erase all the elements from array A[] which are not present in array B[] by using two for loops. After that generate all permutations of the remaining element in the array and for each sequence check for the minimum cost such that the array A[] is the same as the array B[]. Print the minimum cost of the same.
Time Complexity: O(N!*N*M), where N is the size of the array A[] and M is the size of the array B[].
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to first find the length of the longest common subsequence of array A[] and B[] and subtract it from the size of array B[], which gives the number of elements to be added in array A[]. And add amount C into the cost for every new element added. Therefore, the total cost is given by:
Cost = C*(N - LCS(A, B))
where,
LCS is the longest common subsequence of the arrays A[] and B[],
N is the length of the array A[], and
C is the cost of adding each element in the array B[].
Follow the steps below to solve the problem:
- Create a new array say index[] and initialize it with -1 and an array nums[].
- Map each element of the array B[] to its corresponding index in the array index[].
- Traverse the given array A[] and insert the values with its mapped values i.e., index number into the array nums[] array and if the index number is not -1.
- Now find the Longest Increasing Subsequence of the array nums[] to obtain the length of the longest common subsequence of the two given arrays.
- After finding the LCS in the above steps, find the value of cost using the formula discussed above.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find length of the
// longest common subsequence
int findLCS(int* nums, int N)
{
int k = 0;
for (int i = 0; i < N; i++) {
// Find position where element
// is to be inserted
int pos = lower_bound(nums, nums + k,
nums[i])
- nums;
nums[pos] = nums[i];
if (k == pos) {
k = pos + 1;
}
}
// Return the length of LCS
return k;
}
// Function to find the minimum cost
// required to convert the sequence A
// exactly same as B
int minimumCost(int* A, int* B, int M,
int N, int C)
{
// Auxiliary array
int nums[1000000];
// Stores positions of elements of A[]
int index[1000000];
// Initialize index array with -1
memset(index, -1, sizeof(index));
for (int i = 0; i < N; i++) {
// Update the index array with
// index of corresponding
// elements of B
index[B[i]] = i;
}
int k = 0;
for (int i = 0; i < M; i++) {
// Place only A's array values
// with its mapped values
// into nums array
if (index[A[i]] != -1) {
nums[k++] = index[A[i]];
}
}
// Find LCS
int lcs_length = findLCS(nums, k);
// No of elements to be added
// in array A[]
int elements_to_be_added
= N - lcs_length;
// Stores minimum cost
int min_cost
= elements_to_be_added * C;
// Print the minimum cost
cout << min_cost;
}
// Driver Code
int main()
{
// Given array A[]
int A[] = { 1, 6, 3, 5, 10 };
int B[] = { 3, 1, 5 };
// Given C
int C = 2;
// Size of arr A
int M = sizeof(A) / sizeof(A[0]);
// Size of arr B
int N = sizeof(B) / sizeof(B[0]);
// Function Call
minimumCost(A, B, M, N, C);
return 0;
}
Java
// Java program for the above approach
import java.io.*;
class GFG{
// Function to find lower_bound
static int LowerBound(int a[], int k,
int x)
{
int l = -1;
int r = k;
while (l + 1 < r)
{
int m = (l + r) >>> 1;
if (a[m] >= x)
{
r = m;
}
else
{
l = m;
}
}
return r;
}
// Function to find length of the
// longest common subsequence
static int findLCS(int[] nums, int N)
{
int k = 0;
for(int i = 0; i < N; i++)
{
// Find position where element
// is to be inserted
int pos = LowerBound(nums, k,
nums[i]);
nums[pos] = nums[i];
if (k == pos)
{
k = pos + 1;
}
}
// Return the length of LCS
return k;
}
// Function to find the minimum cost
// required to convert the sequence A
// exactly same as B
static int minimumCost(int[] A, int[] B,
int M, int N, int C)
{
// Auxiliary array
int[] nums = new int[100000];
// Stores positions of elements of A[]
int[] index = new int[100000];
// Initialize index array with -1
for(int i = 0; i < 100000; i++)
index[i] = -1;
for(int i = 0; i < N; i++)
{
// Update the index array with
// index of corresponding
// elements of B
index[B[i]] = i;
}
int k = 0;
for(int i = 0; i < M; i++)
{
// Place only A's array values
// with its mapped values
// into nums array
if (index[A[i]] != -1)
{
nums[k++] = index[A[i]];
}
}
// Find LCS
int lcs_length = findLCS(nums, k);
// No of elements to be added
// in array A[]
int elements_to_be_added = N - lcs_length;
// Stores minimum cost
int min_cost = elements_to_be_added * C;
// Print the minimum cost
System.out.println( min_cost);
return 0;
}
// Driver code
public static void main(String[] args)
{
// Given array A[]
int[] A = { 1, 6, 3, 5, 10 };
int[] B = { 3, 1, 5 };
// Given C
int C = 2;
// Size of arr A
int M = A.length;
// Size of arr B
int N = B.length;
// Function call
minimumCost(A, B, M, N, C);
}
}
// This code is contributed by sallagondaavinashreddy7
Python3
# Python3 program for the above approach
# Function to find lower_bound
def LowerBound(a, k, x):
l = -1
r = k
while (l + 1 < r):
m = (l + r) >> 1
if (a[m] >= x):
r = m
else:
l = m
return r
# Function to find length of the
# longest common subsequence
def findLCS(nums, N):
k = 0
for i in range(N):
# Find position where element
# is to be inserted
pos = LowerBound(nums, k, nums[i])
nums[pos] = nums[i]
if (k == pos):
k = pos + 1
# Return the length of LCS
return k
# Function to find the minimum cost
# required to convert the sequence A
# exactly same as B
def minimumCost(A, B, M, N, C):
# Auxiliary array
nums = [0] * 100000
# Stores positions of elements of A[]
# Initialize index array with -1
index = [-1] * 100000
for i in range(N):
# Update the index array with
# index of corresponding
# elements of B
index[B[i]] = i
k = 0
for i in range(M):
# Place only A's array values
# with its mapped values
# into nums array
if (index[A[i]] != -1):
k += 1
nums[k] = index[A[i]]
# Find LCS
lcs_length = findLCS(nums, k)
# No of elements to be added
# in array A[]
elements_to_be_added = N - lcs_length
# Stores minimum cost
min_cost = elements_to_be_added * C
# Print the minimum cost
print( min_cost)
# Driver Code
# Given array A[]
A = [ 1, 6, 3, 5, 10 ]
B = [ 3, 1, 5 ]
# Given C
C = 2
# Size of arr A
M = len(A)
# Size of arr B
N = len(B)
# Function call
minimumCost(A, B, M, N, C)
# This code is contributed by divyeshrabadiya07
C#
// C# program for the above approach
using System;
class GFG{
// Function to find lower_bound
static int LowerBound(int[] a, int k,
int x)
{
int l = -1;
int r = k;
while (l + 1 < r)
{
int m = (l + r) >> 1;
if (a[m] >= x)
{
r = m;
}
else
{
l = m;
}
}
return r;
}
// Function to find length of the
// longest common subsequence
static int findLCS(int[] nums, int N)
{
int k = 0;
for(int i = 0; i < N; i++)
{
// Find position where element
// is to be inserted
int pos = LowerBound(nums, k,
nums[i]);
nums[pos] = nums[i];
if (k == pos)
{
k = pos + 1;
}
}
// Return the length of LCS
return k;
}
// Function to find the minimum cost
// required to convert the sequence A
// exactly same as B
static int minimumCost(int[] A, int[] B,
int M, int N, int C)
{
// Auxiliary array
int[] nums = new int[100000];
// Stores positions of elements of A[]
int[] index = new int[100000];
// Initialize index array with -1
for(int i = 0; i < 100000; i++)
index[i] = -1;
for(int i = 0; i < N; i++)
{
// Update the index array with
// index of corresponding
// elements of B
index[B[i]] = i;
}
int k = 0;
for(int i = 0; i < M; i++)
{
// Place only A's array values
// with its mapped values
// into nums array
if (index[A[i]] != -1)
{
nums[k++] = index[A[i]];
}
}
// Find LCS
int lcs_length = findLCS(nums, k);
// No of elements to be added
// in array A[]
int elements_to_be_added = N - lcs_length;
// Stores minimum cost
int min_cost = elements_to_be_added * C;
// Print the minimum cost
Console.WriteLine(min_cost);
return 0;
}
// Driver code
public static void Main()
{
// Given array A[]
int[] A = { 1, 6, 3, 5, 10 };
int[] B = { 3, 1, 5 };
// Given C
int C = 2;
// Size of arr A
int M = A.Length;
// Size of arr B
int N = B.Length;
// Function call
minimumCost(A, B, M, N, C);
}
}
// This code is contributed by code_hunt
JavaScript
<script>
// javascript program for the above approach
// Function to find lower_bound
function LowerBound(a , k , x) {
var l = -1;
var r = k;
while (l + 1 < r) {
var m = (l + r) >>> 1;
if (a[m] >= x) {
r = m;
} else {
l = m;
}
}
return r;
}
// Function to find length of the
// longest common subsequence
function findLCS(nums , N) {
var k = 0;
for (i = 0; i < N; i++) {
// Find position where element
// is to be inserted
var pos = LowerBound(nums, k, nums[i]);
nums[pos] = nums[i];
if (k == pos) {
k = pos + 1;
}
}
// Return the length of LCS
return k;
}
// Function to find the minimum cost
// required to convert the sequence A
// exactly same as B
function minimumCost(A, B , M , N , C) {
// Auxiliary array
var nums = Array(100000).fill(0);
// Stores positions of elements of A
var index = Array(100000).fill(0);
// Initialize index array with -1
for (i = 0; i < 100000; i++)
index[i] = -1;
for (i = 0; i < N; i++) {
// Update the index array with
// index of corresponding
// elements of B
index[B[i]] = i;
}
var k = 0;
for (i = 0; i < M; i++) {
// Place only A's array values
// with its mapped values
// into nums array
if (index[A[i]] != -1) {
nums[k++] = index[A[i]];
}
}
// Find LCS
var lcs_length = findLCS(nums, k);
// No of elements to be added
// in array A
var elements_to_be_added = N - lcs_length;
// Stores minimum cost
var min_cost = elements_to_be_added * C;
// Print the minimum cost
document.write(min_cost);
return 0;
}
// Driver code
// Given array A
var A = [ 1, 6, 3, 5, 10 ];
var B = [ 3, 1, 5 ];
// Given C
var C = 2;
// Size of arr A
var M = A.length;
// Size of arr B
var N = B.length;
// Function call
minimumCost(A, B, M, N, C);
// This code contributed by umadevi9616
</script>
Time Complexity: O(N * Log N)
Auxiliary Space: O(N)
Similar Reads
Minimize cost to make given Array a permutation of 1 to N by given replacements Given two arrays a[] and b[] of length N and an integer K (1 ⤠K ⤠N). All the integers in array a[] lie within the range [1, K]. ith value in array b[] denotes the cost of replacing a[i] with any number in the range [1, N]. The task is to find the minimum cost to replace the elements of array a[] t
6 min read
Minimum operations required to make two elements equal in Array Given array A[] of size N and integer X, the task is to find the minimum number of operations to make any two elements equal in the array. In one operation choose any element A[i] and replace it with A[i] & X. where & is bitwise AND. If such operations do not exist print -1. Examples: Input:
9 min read
Rearrange an array to make similar indexed elements different from that of another array Given two sorted arrays A[] and B[] consisting of N distinct integers, the task is to rearrange the elements of array B[] such that, for every ith index, A[i] is not equal to B[i]. If multiple such arrangements exist, print any one of them. If no such arrangement exists, print -1. Examples: Input: A
7 min read
Minimize operations required to make each element of Array equal to it's index value Given an array arr[] consisting of N integers, the task is to modify the array such that arr[index] = index using minimum number of operations of the following type: Choose any index i and any integer X, and add X to all the elements in the range [0, i].Choose any index i and any integer X, and chan
7 min read
Minimum Subarray flips required to convert all elements of a Binary Array to K The problem statement is asking for the minimum number of operations required to convert all the elements of a given binary array arr[] to a specified value K, where K can be either 0 or 1. The operations can be performed on any index X of the array, and the operation is to flip all the elements of
8 min read