Minimum cost required to rearrange a given array to make it equal to another given array
Last Updated :
28 Feb, 2022
Given two arrays A[] and B[] consisting of M and N integers respectively, and an integer C, the task is to find the minimum cost required to make the sequence A exactly the same as B(consists of distinct elements only) by performing the following operations on array A[]:
- Remove any element from the array with cost 0.
- Insert a new element anywhere in the array with cost C.
Examples:
Input: A[] = {1, 6, 3, 5, 10}, B[] = {3, 1, 5}, C = 2
Output: 2
Explanation:
Removing elements 1, 6, and 10 from the array costs 0. The array A[] becomes {3, 5}.
Add 1 in between 3 and 5, then the array arr[] becomes {3, 1, 5} which is the same as the array B[].
The cost of above operation is 2.
Input: A[] = {10, 5, 2, 4, 10, 5}, B[] = {5, 1, 2, 10, 4}, C = 3
Output: 6
Explanation:
Removing elements 10, 10, and 5 from the array costs 0. The array A[] becomes {5, 2, 4}.
Add element 1 and 10 in the array as {5, 1, 2, 10, 4} which is the same as the array B[].
The cost of above operation is 3*2 = 6.
Naive Approach: The simplest approach is to erase all the elements from array A[] which are not present in array B[] by using two for loops. After that generate all permutations of the remaining element in the array and for each sequence check for the minimum cost such that the array A[] is the same as the array B[]. Print the minimum cost of the same.
Time Complexity: O(N!*N*M), where N is the size of the array A[] and M is the size of the array B[].
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to first find the length of the longest common subsequence of array A[] and B[] and subtract it from the size of array B[], which gives the number of elements to be added in array A[]. And add amount C into the cost for every new element added. Therefore, the total cost is given by:
Cost = C*(N - LCS(A, B))
where,
LCS is the longest common subsequence of the arrays A[] and B[],
N is the length of the array A[], and
C is the cost of adding each element in the array B[].
Follow the steps below to solve the problem:
- Create a new array say index[] and initialize it with -1 and an array nums[].
- Map each element of the array B[] to its corresponding index in the array index[].
- Traverse the given array A[] and insert the values with its mapped values i.e., index number into the array nums[] array and if the index number is not -1.
- Now find the Longest Increasing Subsequence of the array nums[] to obtain the length of the longest common subsequence of the two given arrays.
- After finding the LCS in the above steps, find the value of cost using the formula discussed above.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find length of the
// longest common subsequence
int findLCS(int* nums, int N)
{
int k = 0;
for (int i = 0; i < N; i++) {
// Find position where element
// is to be inserted
int pos = lower_bound(nums, nums + k,
nums[i])
- nums;
nums[pos] = nums[i];
if (k == pos) {
k = pos + 1;
}
}
// Return the length of LCS
return k;
}
// Function to find the minimum cost
// required to convert the sequence A
// exactly same as B
int minimumCost(int* A, int* B, int M,
int N, int C)
{
// Auxiliary array
int nums[1000000];
// Stores positions of elements of A[]
int index[1000000];
// Initialize index array with -1
memset(index, -1, sizeof(index));
for (int i = 0; i < N; i++) {
// Update the index array with
// index of corresponding
// elements of B
index[B[i]] = i;
}
int k = 0;
for (int i = 0; i < M; i++) {
// Place only A's array values
// with its mapped values
// into nums array
if (index[A[i]] != -1) {
nums[k++] = index[A[i]];
}
}
// Find LCS
int lcs_length = findLCS(nums, k);
// No of elements to be added
// in array A[]
int elements_to_be_added
= N - lcs_length;
// Stores minimum cost
int min_cost
= elements_to_be_added * C;
// Print the minimum cost
cout << min_cost;
}
// Driver Code
int main()
{
// Given array A[]
int A[] = { 1, 6, 3, 5, 10 };
int B[] = { 3, 1, 5 };
// Given C
int C = 2;
// Size of arr A
int M = sizeof(A) / sizeof(A[0]);
// Size of arr B
int N = sizeof(B) / sizeof(B[0]);
// Function Call
minimumCost(A, B, M, N, C);
return 0;
}
Java
// Java program for the above approach
import java.io.*;
class GFG{
// Function to find lower_bound
static int LowerBound(int a[], int k,
int x)
{
int l = -1;
int r = k;
while (l + 1 < r)
{
int m = (l + r) >>> 1;
if (a[m] >= x)
{
r = m;
}
else
{
l = m;
}
}
return r;
}
// Function to find length of the
// longest common subsequence
static int findLCS(int[] nums, int N)
{
int k = 0;
for(int i = 0; i < N; i++)
{
// Find position where element
// is to be inserted
int pos = LowerBound(nums, k,
nums[i]);
nums[pos] = nums[i];
if (k == pos)
{
k = pos + 1;
}
}
// Return the length of LCS
return k;
}
// Function to find the minimum cost
// required to convert the sequence A
// exactly same as B
static int minimumCost(int[] A, int[] B,
int M, int N, int C)
{
// Auxiliary array
int[] nums = new int[100000];
// Stores positions of elements of A[]
int[] index = new int[100000];
// Initialize index array with -1
for(int i = 0; i < 100000; i++)
index[i] = -1;
for(int i = 0; i < N; i++)
{
// Update the index array with
// index of corresponding
// elements of B
index[B[i]] = i;
}
int k = 0;
for(int i = 0; i < M; i++)
{
// Place only A's array values
// with its mapped values
// into nums array
if (index[A[i]] != -1)
{
nums[k++] = index[A[i]];
}
}
// Find LCS
int lcs_length = findLCS(nums, k);
// No of elements to be added
// in array A[]
int elements_to_be_added = N - lcs_length;
// Stores minimum cost
int min_cost = elements_to_be_added * C;
// Print the minimum cost
System.out.println( min_cost);
return 0;
}
// Driver code
public static void main(String[] args)
{
// Given array A[]
int[] A = { 1, 6, 3, 5, 10 };
int[] B = { 3, 1, 5 };
// Given C
int C = 2;
// Size of arr A
int M = A.length;
// Size of arr B
int N = B.length;
// Function call
minimumCost(A, B, M, N, C);
}
}
// This code is contributed by sallagondaavinashreddy7
Python3
# Python3 program for the above approach
# Function to find lower_bound
def LowerBound(a, k, x):
l = -1
r = k
while (l + 1 < r):
m = (l + r) >> 1
if (a[m] >= x):
r = m
else:
l = m
return r
# Function to find length of the
# longest common subsequence
def findLCS(nums, N):
k = 0
for i in range(N):
# Find position where element
# is to be inserted
pos = LowerBound(nums, k, nums[i])
nums[pos] = nums[i]
if (k == pos):
k = pos + 1
# Return the length of LCS
return k
# Function to find the minimum cost
# required to convert the sequence A
# exactly same as B
def minimumCost(A, B, M, N, C):
# Auxiliary array
nums = [0] * 100000
# Stores positions of elements of A[]
# Initialize index array with -1
index = [-1] * 100000
for i in range(N):
# Update the index array with
# index of corresponding
# elements of B
index[B[i]] = i
k = 0
for i in range(M):
# Place only A's array values
# with its mapped values
# into nums array
if (index[A[i]] != -1):
k += 1
nums[k] = index[A[i]]
# Find LCS
lcs_length = findLCS(nums, k)
# No of elements to be added
# in array A[]
elements_to_be_added = N - lcs_length
# Stores minimum cost
min_cost = elements_to_be_added * C
# Print the minimum cost
print( min_cost)
# Driver Code
# Given array A[]
A = [ 1, 6, 3, 5, 10 ]
B = [ 3, 1, 5 ]
# Given C
C = 2
# Size of arr A
M = len(A)
# Size of arr B
N = len(B)
# Function call
minimumCost(A, B, M, N, C)
# This code is contributed by divyeshrabadiya07
C#
// C# program for the above approach
using System;
class GFG{
// Function to find lower_bound
static int LowerBound(int[] a, int k,
int x)
{
int l = -1;
int r = k;
while (l + 1 < r)
{
int m = (l + r) >> 1;
if (a[m] >= x)
{
r = m;
}
else
{
l = m;
}
}
return r;
}
// Function to find length of the
// longest common subsequence
static int findLCS(int[] nums, int N)
{
int k = 0;
for(int i = 0; i < N; i++)
{
// Find position where element
// is to be inserted
int pos = LowerBound(nums, k,
nums[i]);
nums[pos] = nums[i];
if (k == pos)
{
k = pos + 1;
}
}
// Return the length of LCS
return k;
}
// Function to find the minimum cost
// required to convert the sequence A
// exactly same as B
static int minimumCost(int[] A, int[] B,
int M, int N, int C)
{
// Auxiliary array
int[] nums = new int[100000];
// Stores positions of elements of A[]
int[] index = new int[100000];
// Initialize index array with -1
for(int i = 0; i < 100000; i++)
index[i] = -1;
for(int i = 0; i < N; i++)
{
// Update the index array with
// index of corresponding
// elements of B
index[B[i]] = i;
}
int k = 0;
for(int i = 0; i < M; i++)
{
// Place only A's array values
// with its mapped values
// into nums array
if (index[A[i]] != -1)
{
nums[k++] = index[A[i]];
}
}
// Find LCS
int lcs_length = findLCS(nums, k);
// No of elements to be added
// in array A[]
int elements_to_be_added = N - lcs_length;
// Stores minimum cost
int min_cost = elements_to_be_added * C;
// Print the minimum cost
Console.WriteLine(min_cost);
return 0;
}
// Driver code
public static void Main()
{
// Given array A[]
int[] A = { 1, 6, 3, 5, 10 };
int[] B = { 3, 1, 5 };
// Given C
int C = 2;
// Size of arr A
int M = A.Length;
// Size of arr B
int N = B.Length;
// Function call
minimumCost(A, B, M, N, C);
}
}
// This code is contributed by code_hunt
JavaScript
<script>
// javascript program for the above approach
// Function to find lower_bound
function LowerBound(a , k , x) {
var l = -1;
var r = k;
while (l + 1 < r) {
var m = (l + r) >>> 1;
if (a[m] >= x) {
r = m;
} else {
l = m;
}
}
return r;
}
// Function to find length of the
// longest common subsequence
function findLCS(nums , N) {
var k = 0;
for (i = 0; i < N; i++) {
// Find position where element
// is to be inserted
var pos = LowerBound(nums, k, nums[i]);
nums[pos] = nums[i];
if (k == pos) {
k = pos + 1;
}
}
// Return the length of LCS
return k;
}
// Function to find the minimum cost
// required to convert the sequence A
// exactly same as B
function minimumCost(A, B , M , N , C) {
// Auxiliary array
var nums = Array(100000).fill(0);
// Stores positions of elements of A
var index = Array(100000).fill(0);
// Initialize index array with -1
for (i = 0; i < 100000; i++)
index[i] = -1;
for (i = 0; i < N; i++) {
// Update the index array with
// index of corresponding
// elements of B
index[B[i]] = i;
}
var k = 0;
for (i = 0; i < M; i++) {
// Place only A's array values
// with its mapped values
// into nums array
if (index[A[i]] != -1) {
nums[k++] = index[A[i]];
}
}
// Find LCS
var lcs_length = findLCS(nums, k);
// No of elements to be added
// in array A
var elements_to_be_added = N - lcs_length;
// Stores minimum cost
var min_cost = elements_to_be_added * C;
// Print the minimum cost
document.write(min_cost);
return 0;
}
// Driver code
// Given array A
var A = [ 1, 6, 3, 5, 10 ];
var B = [ 3, 1, 5 ];
// Given C
var C = 2;
// Size of arr A
var M = A.length;
// Size of arr B
var N = B.length;
// Function call
minimumCost(A, B, M, N, C);
// This code contributed by umadevi9616
</script>
Time Complexity: O(N * Log N)
Auxiliary Space: O(N)
Similar Reads
Minimize elements to be added to a given array such that it contains another given array as its subsequence
Given an array A[] consisting of N distinct integers and another array B[] consisting of M integers, the task is to find the minimum number of elements to be added to the array B[] such that the array A[] becomes the subsequence of the array B[]. Examples: Input: N = 5, M = 6, A[] = {1, 2, 3, 4, 5},
15+ min read
Minimize cost to make given Array a permutation of 1 to N by given replacements
Given two arrays a[] and b[] of length N and an integer K (1 ⤠K ⤠N). All the integers in array a[] lie within the range [1, K]. ith value in array b[] denotes the cost of replacing a[i] with any number in the range [1, N]. The task is to find the minimum cost to replace the elements of array a[] t
6 min read
Minimum operations required to make two elements equal in Array
Given array A[] of size N and integer X, the task is to find the minimum number of operations to make any two elements equal in the array. In one operation choose any element A[i] and replace it with A[i] & X. where & is bitwise AND. If such operations do not exist print -1. Examples: Input:
9 min read
Minimize count of flips required to make sum of the given array equal to 0
Given an array arr[] consisting of N integers, the task is to minimize the count of elements required to be multiplied by -1 such that the sum of array elements is 0. If it is not possible to make the sum 0, print "-1". Examples: Input: arr[] = {2, 3, 1, 4}Output: 2Explanation: Multiply arr[0] by -1
15+ min read
Minimize elements to be added to a given array such that it contains another given array as its subsequence | Set 2
Given an array A[] consisting of N distinct integers and another array B[] consisting of M integers, the task is to find the minimum number of elements to be added to the array B[] such that the array A[] becomes the subsequence of the array B[]. Examples: Input: N = 5, M = 6, A[] = {1, 2, 3, 4, 5},
9 min read
Rearrange an array to make similar indexed elements different from that of another array
Given two sorted arrays A[] and B[] consisting of N distinct integers, the task is to rearrange the elements of array B[] such that, for every ith index, A[i] is not equal to B[i]. If multiple such arrangements exist, print any one of them. If no such arrangement exists, print -1. Examples: Input: A
7 min read
Minimum changes required to make all element in an array equal
Given an array of length N, the task is to find minimum operation required to make all elements in the array equal. Operation is as follows: Replace the value of one element of the array by one of its adjacent elements. Examples: Input: N = 4, arr[] = {2, 3, 3, 4} Output: 2 Explanation: Replace 2 an
5 min read
Minimize operations required to make each element of Array equal to it's index value
Given an array arr[] consisting of N integers, the task is to modify the array such that arr[index] = index using minimum number of operations of the following type: Choose any index i and any integer X, and add X to all the elements in the range [0, i].Choose any index i and any integer X, and chan
7 min read
Minimum Subarray flips required to convert all elements of a Binary Array to K
The problem statement is asking for the minimum number of operations required to convert all the elements of a given binary array arr[] to a specified value K, where K can be either 0 or 1. The operations can be performed on any index X of the array, and the operation is to flip all the elements of
8 min read
Minimum operations required to change the array such that |arr[i] - M| <= 1
Given an array arr[] of integers, the task is to find the minimum number of operations required to change the array elements such that for any positive integer M, |arr[i] - M| ? 1 for all valid i. In a single operation, any element of the array can either be incremented or decremented by 1.Examples:
6 min read