Open In App

Minimize swaps to rearrange array such that parity of index and corresponding element is same

Last Updated : 10 Mar, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array A[], the task to find minimum swapping operations required to modify the given array A[] such that for every index in the array, parity(i) = parity(A[i]) where parity(x) = x % 2. If it's impossible to obtain such an arrangement, then print -1.

Examples:

Input: A[] = { 2, 4, 3, 1, 5, 6 } 
Output:
Explanation: 
Swapping (4, 3) and (5, 6) modifies the array to [2, 3, 4, 1, 6, 5] such that the parity of i and A[i] is same for all indices.

Input: A[] = {1, 2, 5, 7} 
Output: -1 
Explanation: 
The given array cannot be rearranged as per required condition.

Approach: 
To solve the problem mentioned above an optimal approach is to choose such an index where parity(i) and parity(A[i]) aren't the same.

  • Initialize two variables needodd and needeven to 0 which will store the parity of each element. Check the parity of index if it's odd then increase needodd value by 1 otherwise increase needeven.
  • If needodd and needeven aren't same, then required arrangement is not possible.
  • Otherwise, the final result is obtained by needodd variable, as it is the number of operations that are required. This is because, at any moment, we choose an odd element whose parity is not the same with parity of their index and similarly choose an even element and swap them.

Below is the implementation of the above approach:

C++
// C++ implementation to minimize 
// swaps required to rearrange 
// array such that parity of index and 
// corresponding element is same 
#include <bits/stdc++.h> 
using namespace std; 

// Function to return the 
// parity of number 
int parity(int x) 
{ 
    return x % 2; 
    
} 

// Function to return minimum 
// number of operations required 
int solve(int a[], int size) 
{ 
    
    // Initialize needodd and 
    // needeven value by 0 
    int needeven = 0; 
    int needodd = 0; 
    
    for(int i = 0; i < size; i++) 
    { 
        if(parity(i) != parity(a[i])) 
        { 
            
            // Check if parity(i) is odd 
            if(parity(i) % 2) 
            { 
                
                // increase needodd 
                // as we need odd no 
                // at that position. 
                needodd++; 
            } 
            else
            { 

                // increase needeven 
                // as we need even 
                // number at that position 
                needeven++; 
            } 
        } 
    } 
    
    // If needeven and needodd are unequal 
    if(needeven != needodd) 
        return -1; 
    else
        return needodd; 
} 

// Driver Code 
int main() 
{ 
    int a[] = { 2, 4, 3, 1, 5, 6}; 
    int n = sizeof(a) / sizeof(a[0]); 

    // Function call 
    cout << solve(a, n) << endl; 

    return 0; 
} 

// This code is contributed by venky07 
Java
// Java implementation to minimize  
// swaps required to rearrange  
// array such that parity of index and  
// corresponding element is same 
import java.util.*;

class GFG{
    
// Function to return the 
// parity of number 
static int parity(int x) 
{ 
    return x % 2; 
} 

// Function to return minimum 
// number of operations required 
static int solve(int a[], int size) 
{ 
    
    // Initialize needodd and 
    // needeven value by 0 
    int needeven = 0; 
    int needodd = 0; 
    
    for(int i = 0; i < size; i++) 
    {
        if(parity(i) != parity(a[i])) 
        { 
            
            // Check if parity(i) is odd 
            if(parity(i) % 2 == 1) 
            { 
                
                // Increase needodd 
                // as we need odd no 
                // at that position. 
                needodd++; 
            } 
            else
            { 
                
                // Increase needeven 
                // as we need even 
                // number at that position 
                needeven++; 
            } 
        } 
    } 
    
    // If needeven and needodd are unequal 
    if(needeven != needodd) 
        return -1; 
    else
        return needodd; 
} 

// Driver Code
public static void main (String[] args)
{
    int a[] = { 2, 4, 3, 1, 5, 6}; 
    int n = a.length; 
    
    // Function call 
    System.out.println(solve(a, n)); 
}
}

// This code is contributed by offbeat
Python3
# Python3 implementation to minimize 
# swaps required to rearrange 
# array such that parity of index and 
# corresponding element is same 

# Function to return the 
# parity of number 
def parity(x): 
    return x % 2

# Function to return minimum 
# number of operations required 

def solve(a, size): 
    
    # Initialize needodd and 
    # needeven value by 0 
    needeven = 0
    needodd = 0
    for i in range(size): 
                
        if parity(i)!= parity(a[i]): 
            
            # Check if parity(i) is odd 
            if parity(i) % 2: 
                
                # increase needodd 
                # as we need odd no 
                # at that position. 
                needodd+= 1
            else: 
                # increase needeven 
                # as we need even 
                # number at that position 
                needeven+= 1
    
    # If needeven and needodd are unequal 
    if needodd != needeven: 
        return -1
        
    return needodd 
    
# Driver code     
if __name__ =="__main__": 
    
    a = [2, 4, 3, 1, 5, 6] 
    n = len(a) 
    print(solve(a, n)) 
C#
// C# implementation to minimize  
// swaps required to rearrange  
// array such that parity of index and  
// corresponding element is same 
using System;
class GFG{
    
// Function to return the 
// parity of number 
static int parity(int x) 
{ 
  return x % 2; 
} 

// Function to return minimum 
// number of operations required 
static int solve(int[] a, int size) 
{     
  // Initialize needodd and 
  // needeven value by 0 
  int needeven = 0; 
  int needodd = 0; 

  for(int i = 0; i < size; i++) 
  {
    if(parity(i) != parity(a[i])) 
    { 
      // Check if parity(i) is odd 
      if(parity(i) % 2 == 1) 
      { 
        // Increase needodd 
        // as we need odd no 
        // at that position. 
        needodd++; 
      } 
      else
      { 
        // Increase needeven 
        // as we need even 
        // number at that position 
        needeven++; 
      } 
    } 
  } 

  // If needeven and needodd are unequal 
  if(needeven != needodd) 
    return -1; 
  else
    return needodd; 
} 

// Driver Code
public static void Main ()
{
  int[] a = {2, 4, 3, 1, 5, 6}; 
  int n = a.Length; 

  // Function call 
  Console.Write(solve(a, n)); 
}
}

// This code is contributed by Chitranayal
JavaScript
<script>

// Javascript implementation to minimize 
// swaps required to rearrange array such
// that parity of index and corresponding
// element is same

// Function to return the
// parity of number
function parity(x)
{
    return x % 2;
}

// Function to return minimum
// number of operations required
function solve(a, size)
{ 
    
    // Initialize needodd and
    // needeven value by 0
    let needeven = 0;
    let needodd = 0;
    
    for(let i = 0; i < size; i++)
    {
        if (parity(i) != parity(a[i]))
        {
            
            // Check if parity(i) is odd
            if (parity(i) % 2 == 1)
            {
                
                // Increase needodd
                // as we need odd no
                // at that position.
                needodd++;
            }
            else
            {
                
                // Increase needeven
                // as we need even
                // number at that position
                needeven++;
            }
        }
    }
    
    // If needeven and needodd are unequal
    if (needeven != needodd)
        return -1;
    else
        return needodd;
}

// Driver code
let a = [ 2, 4, 3, 1, 5, 6 ];
let n = a.length;

// Function call
document.write(solve(a, n));

// This code is contributed by rameshtravel07

</script>

Output: 
2

 

Time Complexity: O(n), where n is the size of the given array
Auxiliary Space: O(1)


Next Article
Article Tags :
Practice Tags :

Similar Reads