Minimize count of array elements to be removed such that at least K elements are equal to their index values
Last Updated :
02 Oct, 2023
Given an array arr[](1- based indexing) consisting of N integers and a positive integer K, the task is to find the minimum number of array elements that must be removed such that at least K array elements are equal to their index values. If it is not possible to do so, then print -1.
Examples:
Input: arr[] = {5, 1, 3, 2, 3} K = 2
Output: 2
Explanation:
Following are the removal operations required:
- Removing arr[1] modifies array to {1, 3, 2, 3} -> 1 element is equal to its index value.
- Removing arr[3] modifies array to {1, 2, 3} -> 3 elements are equal to their index value.
After the above operations 3(>= K) elements are equal to their index values and the minimum removals required is 2.
Input: arr[] = {2, 3, 4} K = 1
Output: -1
Approach: The above problem can be solved with the help of Dynamic Programming. Follow the steps below to solve the given problem.
- Initialize a 2-D dp table such that dp[i][j] will denote maximum elements that have values equal to their indexes when a total of j elements are present.
- All the values in the dp table are initially filled with 0s.
- Iterate for each i in the range [0, N-1] and j in the range [0, i], there are two choices.
- Delete the current element, the dp table can be updated as dp[i+1][j] = max(dp[i+1][j], dp[i][j]).
- Keep the current element, then dp table can be updated as: dp[i+1][j+1] = max(dp[i+1][j+1], dp[i][j] + (arr[i+1] == j+1)).
- Now for each j in the range [N, 0] check if the value of dp[N][j] is greater than or equal to K. Take minimum if found and return the answer.
- Otherwise, return -1 at the end. That means no possible answer is found.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to minimize the removals of
// array elements such that atleast K
// elements are equal to their indices
int MinimumRemovals(int a[], int N, int K)
{
// Store the array as 1-based indexing
// Copy of first array
int b[N + 1];
for (int i = 0; i < N; i++) {
b[i + 1] = a[i];
}
// Make a dp-table of (N*N) size
int dp[N + 1][N + 1];
// Fill the dp-table with zeroes
memset(dp, 0, sizeof(dp));
for (int i = 0; i < N; i++) {
for (int j = 0; j <= i; j++) {
// Delete the current element
dp[i + 1][j] = max(
dp[i + 1][j], dp[i][j]);
// Take the current element
dp[i + 1][j + 1] = max(
dp[i + 1][j + 1],
dp[i][j] + ((b[i + 1] == j + 1) ? 1 : 0));
}
}
// Check for the minimum removals
for (int j = N; j >= 0; j--) {
if (dp[N][j] >= K) {
return (N - j);
}
}
return -1;
}
// Driver Code
int main()
{
int arr[] = { 5, 1, 3, 2, 3 };
int K = 2;
int N = sizeof(arr) / sizeof(arr[0]);
cout << MinimumRemovals(arr, N, K);
return 0;
}
Java
// Java program for the above approach
import java.io.*;
class GFG {
// Function to minimize the removals of
// array elements such that atleast K
// elements are equal to their indices
static int MinimumRemovals(int a[], int N, int K)
{
// Store the array as 1-based indexing
// Copy of first array
int b[] = new int[N + 1];
for (int i = 0; i < N; i++) {
b[i + 1] = a[i];
}
// Make a dp-table of (N*N) size
int dp[][] = new int[N + 1][N + 1];
for (int i = 0; i < N; i++) {
for (int j = 0; j <= i; j++) {
// Delete the current element
dp[i + 1][j] = Math.max(dp[i + 1][j], dp[i][j]);
// Take the current element
dp[i + 1][j + 1] = Math.max(
dp[i + 1][j + 1],
dp[i][j]
+ ((b[i + 1] == j + 1) ? 1 : 0));
}
}
// Check for the minimum removals
for (int j = N; j >= 0; j--) {
if (dp[N][j] >= K) {
return (N - j);
}
}
return -1;
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 5, 1, 3, 2, 3 };
int K = 2;
int N = arr.length;
System.out.println(MinimumRemovals(arr, N, K));
}
}
// This code is contributed by Dharanendra L V.
Python3
# Python 3 program for the above approach
# Function to minimize the removals of
# array elements such that atleast K
# elements are equal to their indices
def MinimumRemovals(a, N, K):
# Store the array as 1-based indexing
# Copy of first array
b = [0 for i in range(N + 1)]
for i in range(N):
b[i + 1] = a[i]
# Make a dp-table of (N*N) size
dp = [[0 for i in range(N+1)] for j in range(N+1)]
for i in range(N):
for j in range(i + 1):
# Delete the current element
dp[i + 1][j] = max(dp[i + 1][j], dp[i][j])
# Take the current element
dp[i + 1][j + 1] = max(dp[i + 1][j + 1],dp[i][j] + (1 if (b[i + 1] == j + 1) else 0))
# Check for the minimum removals
j = N
while(j >= 0):
if(dp[N][j] >= K):
return (N - j)
j -= 1
return -1
# Driver Code
if __name__ == '__main__':
arr = [5, 1, 3, 2, 3]
K = 2
N = len(arr)
print(MinimumRemovals(arr, N, K))
# This code is contributed by SURENDRA_GANGWAR.
C#
// C# code for the above approach
using System;
public class GFG
{
// Function to minimize the removals of
// array elements such that atleast K
// elements are equal to their indices
static int MinimumRemovals(int[] a, int N, int K)
{
// Store the array as 1-based indexing
// Copy of first array
int[] b = new int[N + 1];
for (int i = 0; i < N; i++) {
b[i + 1] = a[i];
}
// Make a dp-table of (N*N) size
int[, ] dp = new int[N + 1, N + 1];
for (int i = 0; i < N; i++) {
for (int j = 0; j <= i; j++) {
// Delete the current element
dp[i + 1, j]
= Math.Max(dp[i + 1, j], dp[i, j]);
// Take the current element
dp[i + 1, j + 1] = Math.Max(
dp[i + 1, j + 1],
dp[i, j]
+ ((b[i + 1] == j + 1) ? 1 : 0));
}
}
// Check for the minimum removals
for (int j = N; j >= 0; j--) {
if (dp[N, j] >= K) {
return (N - j);
}
}
return -1;
}
static public void Main()
{
// Code
int[] arr = { 5, 1, 3, 2, 3 };
int K = 2;
int N = arr.Length;
Console.Write(MinimumRemovals(arr, N, K));
}
}
// This code is contributed by Potta Lokesh
JavaScript
<script>
// Javascript program for the above approach
// Function to minimize the removals of
// array elements such that atleast K
// elements are equal to their indices
function MinimumRemovals(a, N, K)
{
// Store the array as 1-based indexing
// Copy of first array
let b = new Array(N + 1);
for (let i = 0; i < N; i++) {
b[i + 1] = a[i];
}
// Make a dp-table of (N*N) size
let dp = new Array(N + 1).fill(0).map(() => new Array(N + 1).fill(0));
for (let i = 0; i < N; i++) {
for (let j = 0; j <= i; j++) {
// Delete the current element
dp[i + 1][j] = Math.max(
dp[i + 1][j], dp[i][j]);
// Take the current element
dp[i + 1][j + 1] = Math.max(
dp[i + 1][j + 1],
dp[i][j] + ((b[i + 1] == j + 1) ? 1 : 0));
}
}
// Check for the minimum removals
for (let j = N; j >= 0; j--) {
if (dp[N][j] >= K) {
return (N - j);
}
}
return -1;
}
// Driver Code
let arr = [ 5, 1, 3, 2, 3 ];
let K = 2;
let N = arr.length
document.write(MinimumRemovals(arr, N, K));
// This code is contributed by _saurabh_jaiswal.
</script>
Time Complexity: O(N2)
Auxiliary Space: O(N2)
Efficient approach : Space optimization
In previous approach the current value dp[i][j] is only depend upon the current and previous row values of DP. So to optimize the space complexity we use a single 1D array to store the computations.
Implementation steps:
- Create a 1D vector dp of size N+1 and initialize it with 0.
- Set a base case by initializing the values of DP .
- Now iterate over subproblems by the help of nested loop and get the current value from previous computations.
- At last iterate over Dp and whenever dp[j] >= K return (N - j) .
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
// Function to minimize the removals of
// array elements such that atleast K
// elements are equal to their indices
int MinimumRemovals(int a[], int N, int K)
{
// Store the array as 1-based indexing
// Copy of first array
int b[N + 1];
for (int i = 0; i < N; i++) {
b[i + 1] = a[i];
}
// Initialize the dp-table with zeroes
int dp[N + 1];
memset(dp, 0, sizeof(dp));
// Iterate over the array and fill the dp-table
for (int i = 0; i < N; i++) {
for (int j = i + 1; j > 0; j--) {
dp[j] = max(dp[j], dp[j - 1] + ((b[i + 1] == j) ? 1 : 0));
}
}
// Check for the minimum removals
for (int j = N; j >= 0; j--) {
if (dp[j] >= K) {
return (N - j);
}
}
return -1;
}
// Driver Code
int main()
{
int arr[] = { 5, 1, 3, 2, 3 };
int K = 2;
int N = sizeof(arr) / sizeof(arr[0]);
cout << MinimumRemovals(arr, N, K);
return 0;
}
// this code is contributed by bhardwajji
Java
import java.util.Arrays;
public class MinimumRemovals {
// Function to minimize the removals of
// array elements such that atleast K
// elements are equal to their indices
static int minimumRemovals(int a[], int N, int K)
{
// Store the array as 1-based indexing
// Copy of first array
int b[] = new int[N + 1];
for (int i = 0; i < N; i++) {
b[i + 1] = a[i];
}
// Initialize the dp-table with zeroes
int dp[] = new int[N + 1];
Arrays.fill(dp, 0);
// Iterate over the array and fill the dp-table
for (int i = 0; i < N; i++) {
for (int j = i + 1; j > 0; j--) {
dp[j] = Math.max(dp[j], dp[j - 1] + ((b[i + 1] == j) ? 1 : 0));
}
}
// Check for the minimum removals
for (int j = N; j >= 0; j--) {
if (dp[j] >= K) {
return (N - j);
}
}
return -1;
}
// Driver Code
public static void main(String[] args) {
int arr[] = { 5, 1, 3, 2, 3 };
int K = 2;
int N = arr.length;
System.out.println(minimumRemovals(arr, N, K));
}
}
Python
# Function to minimize the removals of
# array elements such that atleast K
# elements are equal to their indices
def MinimumRemovals(a, N, K):
# Store the array as 1-based indexing
# Copy of first array
b = [0] * (N + 1)
for i in range(N):
b[i + 1] = a[i]
# Initialize the dp-table with zeroes
dp = [0] * (N + 1)
# Iterate over the array and fill the dp-table
for i in range(N):
for j in range(i + 1, 0, -1):
dp[j] = max(dp[j], dp[j - 1] + ((b[i + 1] == j)))
# Check for the minimum removals
for j in range(N, -1, -1):
if dp[j] >= K:
return (N - j)
return -1
# Driver Code
arr = [5, 1, 3, 2, 3]
K = 2
N = len(arr)
print(MinimumRemovals(arr, N, K))
C#
using System;
public class Program
{
// Function to minimize the removals of
// array elements such that atleast K
// elements are equal to their indices
public static int MinimumRemovals(int[] a, int N, int K)
{
// Store the array as 1-based indexing
// Copy of first array
int[] b = new int[N + 1];
for (int i = 0; i < N; i++) {
b[i + 1] = a[i];
}
// Initialize the dp-table with zeroes
int[] dp = new int[N + 1];
Array.Fill(dp, 0);
// Iterate over the array and fill the dp-table
for (int i = 0; i < N; i++) {
for (int j = i + 1; j > 0; j--) {
dp[j] = Math.Max(
dp[j],
dp[j - 1] + ((b[i + 1] == j) ? 1 : 0));
}
}
// Check for the minimum removals
for (int j = N; j >= 0; j--) {
if (dp[j] >= K) {
return (N - j);
}
}
return -1;
}
// Driver Code
public static void Main()
{
int[] arr = { 5, 1, 3, 2, 3 };
int K = 2;
int N = arr.Length;
Console.WriteLine(MinimumRemovals(arr, N, K));
}
}
// This code is contributed by user_dtewbxkn77n
JavaScript
function minimumRemovals(a, N, K) {
// Store the array as 1-based indexing
// Copy of the first array
let b = new Array(N + 1);
for (let i = 0; i < N; i++) {
b[i + 1] = a[i];
}
// Initialize the dp-table with zeroes
let dp = new Array(N + 1).fill(0);
// Iterate over the array and fill the dp-table
for (let i = 0; i < N; i++) {
for (let j = i + 1; j > 0; j--) {
dp[j] = Math.max(dp[j], dp[j - 1] + (b[i + 1] === j ? 1 : 0));
}
}
// Check for the minimum removals
for (let j = N; j >= 0; j--) {
if (dp[j] >= K) {
return N - j;
}
}
return -1;
}
// Driver Code
let arr = [5, 1, 3, 2, 3];
let K = 2;
let N = arr.length;
console.log(minimumRemovals(arr, N, K));
Output:
2
Time Complexity: O(N^2)
Auxiliary Space: O(N)
Similar Reads
Count of Array elements to be divided by 2 to make at least K elements equal Given an integer array arr[] of size N, the task is to find the minimum number of array elements required to be divided by 2, to make at least K elements in the array equal.Example : Input: arr[] = {1, 2, 2, 4, 5}, N = 5, K = 3 Output: 1 Explanation: Dividing 4 by 2 modifies the array to {1, 2, 2, 2
9 min read
Minimize count of divisions by D to obtain at least K equal array elements Given an array A[ ] of size N and two integers K and D, the task is to calculate the minimum possible number of operations required to obtain at least K equal array elements. Each operation involves replacing an element A[i] by A[i] / D. This operation can be performed any number of times. Examples:
9 min read
Maximum value K such that array has at-least K elements that are >= K Given an array of positive integers, find maximum possible value K such that the array has at-least K elements that are greater than or equal to K. The array is unsorted and may contain duplicate values. Examples : Input: [2, 3, 4, 5, 6, 7] Output: 4 Explanation : 4 elements [4, 5, 6, 7] are greater
14 min read
Minimum number of elements to be removed such that the sum of the remaining elements is equal to k Given an array arr[] of integers and an integer k, the task is to find the minimum number of integers that need to be removed from the array such that the sum of the remaining elements is equal to k. If we cannot get the required sum the print -1.Examples: Input: arr[] = {1, 2, 3}, k = 3 Output: 1 E
8 min read
Maximum elements that can be removed from front of two arrays such that their sum is at most K Given an integer K and two arrays A[] and B[] consisting of N and M integers, the task is to maximize the number of elements that can be removed from the front of either array according to the following rules: Remove an element from the front of either array A[] and B[] such that the value of the re
15+ min read