Maximum value K such that array has at-least K elements that are >= K
Last Updated :
08 Mar, 2023
Given an array of positive integers, find maximum possible value K such that the array has at-least K elements that are greater than or equal to K. The array is unsorted and may contain duplicate values.
Examples :
Input: [2, 3, 4, 5, 6, 7]
Output: 4
Explanation : 4 elements [4, 5, 6, 7]
are greater than equal to 4
Input: [1, 2, 3, 4]
Output: 2
Explanation : 3 elements [2, 3, 4] are
greater than equal to 2
Input: [4, 7, 2, 3, 8]
Output: 3
Explanation : 4 elements [4, 7, 3, 8]
are greater than equal to 3
Input: [6, 7, 9, 8, 10]
Output: 5
Explanation : All 5 elements are greater
than equal to 5
Expected time complexity : O(n)
Method 1 [Simple : O(n2) time] :
Let size of input array be n. Let us consider following important observations.
- The maximum possible value of result can be n. We get the maximum possible value when all elements are greater than or equal to n. For example, if input array is {10, 20, 30}, n is 3. The value of result can't be greater than 3.
- The minimum possible value would be 1. An example case when get this output is, when all elements are 1.
So we can run a loop from n to 1 and count greater elements for every value.
C++
// C++ program to find maximum possible value K
// such that array has at-least K elements that
// are greater than or equals to K.
#include <iostream>
using namespace std;
// Function to return maximum possible value K
// such that array has atleast K elements that
// are greater than or equals to K
int findMaximumNum(unsigned int arr[], int n)
{
// output can contain any number from n to 0
// where n is length of the array
// We start a loop from n as we need to find
// maximum possible value
for (int i = n; i >= 1; i--)
{
// count contains total number of elements
// in input array that are more than equal to i
int count = 0;
// traverse the input array and find count
for (int j=0; j<n; j++)
if (i <= arr[j])
count++;
if (count >= i)
return i;
}
return 1;
}
// Driver code
int main()
{
unsigned int arr[] = {1, 2, 3, 8, 10 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << findMaximumNum(arr, n);
return 0;
}
Java
// Java program to find maximum
// possible value K such that
// array has at-least K elements
// that are greater than or equals to K.
import java.io.*;
class GFG
{
// Function to return maximum
// possible value K such that
// array has atleast K elements
// that are greater than or equals to K
static int findMaximumNum(int arr[],
int n)
{
// output can contain any
// number from n to 0 where
// n is length of the array
// We start a loop from n
// as we need to find
// maximum possible value
for (int i = n; i >= 1; i--)
{
// count contains total
// number of elements
// in input array that
// are more than equal to i
int count = 0;
// traverse the input
// array and find count
for (int j = 0; j < n; j++)
if (i <= arr[j])
count++;
if (count >= i)
return i;
}
return 1;
}
// Driver code
public static void main (String[] args)
{
int arr[] = {1, 2, 3, 8, 10 };
int n = arr.length;
System.out.println(findMaximumNum(arr, n));
}
}
// This code is contributed by aj_36
Python3
# python 3 program to find maximum possible value K
# such that array has at-least K elements that
# are greater than or equals to K.
# Function to return maximum possible value K
# such that array has atleast K elements that
# are greater than or equals to K
def findMaximumNum(arr, n):
# output can contain any number from n to 0
# where n is length of the array
# We start a loop from n as we need to find
# maximum possible value
i = n
while(i >= 1):
# count contains total number of elements
# in input array that are more than equal to i
count = 0
# traverse the input array and find count
for j in range(0,n,1):
if (i <= arr[j]):
count += 1
if (count >= i):
return i
i -= 1
return 1
# Driver code
if __name__ == '__main__':
arr = [1, 2, 3, 8, 10]
n = len(arr)
print(findMaximumNum(arr, n))
# This code is contributed by
# Surendra_Gangwar
C#
// C# program to find maximum
// possible value K such that
// array has at-least K elements
// that are greater than or equals to K.
using System;
class GFG
{
// Function to return maximum
// possible value K such that
// array has atleast K elements
// that are greater than or equals to K
static int findMaximumNum(int []arr,
int n)
{
// output can contain any
// number from n to 0 where
// n is length of the array
// We start a loop from n
// as we need to find
// maximum possible value
for (int i = n; i >= 1; i--)
{
// count contains total
// number of elements
// in input array that
// are more than equal to i
int count = 0;
// traverse the input
// array and find count
for (int j = 0; j < n; j++)
if (i <= arr[j])
count++;
if (count >= i)
return i;
}
return 1;
}
// Driver code
static public void Main ()
{
int []arr = {1, 2, 3, 8, 10 };
int n = arr.Length;
Console.WriteLine(findMaximumNum(arr, n));
}
}
// This code is contributed by m_kit
PHP
<?php
// PHP program to find maximum
// possible value K such that
// array has at-least K elements
// that are greater than or
// equals to K.
// Function to return maximum
// possible value K such that
// array has atleast K elements
// that are greater than or
// equals to K
function findMaximumNum($arr, $n)
{
// output can contain any
// number from n to 0 where
// n is length of the array
// We start a loop from
// n as we need to find
// maximum possible value
for ($i = $n; $i >= 1; $i--)
{
// count contains total
// number of elements in
// input array that are
// more than equal to i
$count = 0;
// traverse the input
// array and find count
for ($j = 0; $j < $n; $j++)
if ($i <= $arr[$j])
$count++;
if ($count >= $i)
return $i;
}
return 1;
}
// Driver code
$arr = array (1, 2, 3, 8, 10);
$n = sizeof($arr);
echo findMaximumNum($arr, $n);
// This code is contributed by ajit
?>
JavaScript
<script>
// Javascript program to find maximum
// possible value K such that
// array has at-least K elements
// that are greater than or equals to K.
// Function to return maximum
// possible value K such that
// array has atleast K elements
// that are greater than or equals to K
function findMaximumNum(arr, n)
{
// output can contain any
// number from n to 0 where
// n is length of the array
// We start a loop from n
// as we need to find
// maximum possible value
for (let i = n; i >= 1; i--)
{
// count contains total
// number of elements
// in input array that
// are more than equal to i
let count = 0;
// traverse the input
// array and find count
for (let j = 0; j < n; j++)
if (i <= arr[j])
count++;
if (count >= i)
return i;
}
return 1;
}
let arr = [1, 2, 3, 8, 10 ];
let n = arr.length;
document.write(findMaximumNum(arr, n));
</script>
Time Complexity : O(N2) ,here N is size of array.
Space Complexity : O(1) ,since no extra space required.
Method 2 [Efficient : O(n) time and O(n) extra space]
- The idea is to construct auxiliary array of size n + 1, and use that array to find count of greater elements in input array. Let the auxiliary array be freq[]. We initialize all elements of this array as 0.
- We process all input elements.
- If an element arr[i] is less than n, then we increment its frequency, i.e., we do freq[arr[i]]++.
- Else we increment freq[n].
- After step 2 we have two things.
- Frequencies of elements for elements smaller than n stored in freq[0..n-1].
- Count of elements greater than n stored in freq[n].
Finally, we process the freq[] array backwards to find the output by keeping sum of the values processed so far.
Below is implementation of above idea.
C++
// C++ program to find maximum possible value K such
// that array has atleast K elements that are greater
// than or equals to K.
#include <bits/stdc++.h>
using namespace std;
// Function to return maximum possible value K such
// that array has at-least K elements that are greater
// than or equals to K.
int findMaximumNum(unsigned int arr[], int n)
{
// construct auxiliary array of size n + 1 and
// initialize the array with 0
vector<int> freq(n+1, 0);
// store the frequency of elements of
// input array in the auxiliary array
for (int i = 0; i < n; i++)
{
// If element is smaller than n, update its
// frequency
if (arr[i] < n)
freq[arr[i]]++;
// Else increment count of elements greater
// than n.
else
freq[n]++;
}
// sum stores number of elements in input array
// that are greater than or equal to current
// index
int sum = 0;
// scan auxiliary array backwards
for (int i = n; i > 0; i--)
{
sum += freq[i];
// if sum is greater than current index,
// current index is the answer
if (sum >= i)
return i;
}
}
// Driver code
int main()
{
unsigned int arr[] = {1, 2, 3, 8, 10 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << findMaximumNum(arr, n);
return 0;
}
Java
// Java program to find maximum possible value K such
// that array has atleast K elements that are greater
// than or equals to K.
import java.util.Vector;
class GFG {
// Function to return maximum possible value K such
// that array has at-least K elements that are greater
// than or equals to K.
static int findMaximumNum(int arr[], int n) {
// construct auxiliary array of size n + 1 and
// initialize the array with 0
int[] freq=new int[n+1];
for (int i = 0; i < n + 1; i++) {
freq[i] = 0;
}
// store the frequency of elements of
// input array in the auxiliary array
for (int i = 0; i < n; i++) {
// If element is smaller than n, update its
// frequency
if (arr[i] < n) //
{
freq[arr[i]]++;
} // Else increment count of elements greater
// than n.
else {
freq[n]++;
}
}
// sum stores number of elements in input array
// that are greater than or equal to current
// index
int sum = 0;
// scan auxiliary array backwards
for (int i = n; i > 0; i--) {
sum += freq[i];
// if sum is greater than current index,
// current index is the answer
if (sum >= i) {
return i;
}
}
return 0;
}
// Driver code
public static void main(String[] args) {
int arr[] = {1, 2, 3, 8, 10};
int n = arr.length;
System.out.println(findMaximumNum(arr, n));
}
}
/*This Java code is contributed by koulick_sadhu*/
Python3
# Python program to find maximum possible value K such
# that array has atleast K elements that are greater
# than or equals to K.
# Function to return maximum possible value K such
# that array has at-least K elements that are greater
# than or equals to K.
def findMaximumNum(arr, n):
# construct auxiliary array of size n + 1 and
# initialize the array with 0
freq = [0 for i in range(n+1)]
# store the frequency of elements of
# input array in the auxiliary array
for i in range(n):
# If element is smaller than n, update its
# frequency
if (arr[i] < n):
freq[arr[i]] += 1
# Else increment count of elements greater
# than n.
else:
freq[n] += 1
# sum stores number of elements in input array
# that are greater than or equal to current
# index
sum = 0
# scan auxiliary array backwards
for i in range(n,0,-1):
sum += freq[i]
# if sum is greater than current index,
# current index is the answer
if (sum >= i):
return i
# Driver code
arr = [1, 2, 3, 8, 10]
n = len(arr)
print(findMaximumNum(arr, n))
# This code is contributed by shinjanpatra
C#
// C# program to find maximum possible value K such
// that array has atleast K elements that are greater
// than or equals to K.
using System;
using System.Collections.Generic;
class GFG
{
// Function to return maximum possible value K such
// that array has at-least K elements that are greater
// than or equals to K.
static int findMaximumNum(int []arr, int n)
{
// construct auxiliary array of size n + 1 and
// initialize the array with 0
List<int> freq = new List<int>();
for (int i = 0; i < n + 1; i++)
{
freq.Insert(i, 0);
}
// store the frequency of elements of
// input array in the auxiliary array
for (int i = 0; i < n; i++)
{
// If element is smaller than n, update its
// frequency
if (arr[i] < n) //freq[arr[i]]++;
{
freq.Insert(arr[i], freq[arr[i]] + 1);
}
// Else increment count of elements greater
// than n.
else
{
freq.Insert(n, freq[n] + 1);
}
//freq[n]++;
}
// sum stores number of elements in input array
// that are greater than or equal to current
// index
int sum = 0;
// scan auxiliary array backwards
for (int i = n; i > 0; i--)
{
sum += freq[i];
// if sum is greater than current index,
// current index is the answer
if (sum >= i)
{
return i;
}
}
return 0;
}
// Driver code
public static void Main()
{
int []arr = {1, 2, 3, 8, 10};
int n = arr.Length;
Console.WriteLine(findMaximumNum(arr, n));
}
}
/* This code contributed by PrinciRaj1992 */
JavaScript
<script>
// Javascript program to find maximum possible value K such
// that array has atleast K elements that are greater
// than or equals to K.
// Function to return maximum possible value K such
// that array has at-least K elements that are greater
// than or equals to K.
function findMaximumNum(arr, n)
{
// construct auxiliary array of size n + 1 and
// initialize the array with 0
let freq = new Array(n + 1).fill(0);
// store the frequency of elements of
// input array in the auxiliary array
for (let i = 0; i < n; i++) {
// If element is smaller than n, update its
// frequency
if (arr[i] < n)
freq[arr[i]]++;
// Else increment count of elements greater
// than n.
else
freq[n]++;
}
// sum stores number of elements in input array
// that are greater than or equal to current
// index
let sum = 0;
// scan auxiliary array backwards
for (let i = n; i > 0; i--) {
sum += freq[i];
// if sum is greater than current index,
// current index is the answer
if (sum >= i)
return i;
}
}
// Driver code
let arr = [1, 2, 3, 8, 10];
let n = arr.length;
document.write(findMaximumNum(arr, n));
// This code is contributed by gfgking.
</script>
Similar Reads
Find K for every Array element such that at least K prefixes are ≥ K Given an array arr[] consisting of N non-negative integers, the task is to find an integer K for every index such that at least K integers in the array till that index are greater or equal to K. Note: Consider 1-based indexing Examples: Input: arr[] = {3, 0, 6, 1, 5} Output: K = {1, 1, 2, 2, 3} Expl
7 min read
Find X such that most Array elements are of form (X + p*K) Given an array arr[] and a number K, the task is to find a value X such that maximum number of array elements can be expressed in the form (X + p*K). Note: If there are multiple possible values of X, print the minimum among them. Examples: Input: arr[] = {1, 3, 5, 2, 4, 6}, k = 2Output: 1Explanation
11 min read
Find a number K such that Array contains at least K numbers greater than or equal to K Given an array arr[] of non-negative integers of size N, the task is to find an integer H such that at least K integers in the array are greater or equal to K.Examples: Input: arr[] = [3, 0, 6, 1, 5] Output: 3 Explanation: There are 3 number greater than or equal to 3 in the array i.e. 3, 6 and 5.In
4 min read
Find a number K such that exactly K array elements are greater than or equal to K Given an array a[] of size N, which contains only non-negative elements, the task is to find any integer K for which there are exactly K array elements that are greater than or equal to K. If no such K exists, then print -1. Examples: Input: a[] = {7, 8, 9, 0, 0, 1}Output: 3Explanation:Since 3 is le
10 min read
Maximize Kth largest element after splitting the given Array at most C times Given an array arr[] and two positive integers K and C, the task is to maximize the Kth maximum element obtained after splitting an array element arr[] into two parts(not necessarily an integer) C number of times. Print -1 if there doesn't exist Kth maximum element. Note: It is compulsory to do spli
7 min read