Open In App

Maximum Sum of two non-overlapping Subarrays of any length

Last Updated : 03 Aug, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array A consisting of N integers, the task is to find the maximum sum of two non-overlapping subarrays of any length of the array.

Note: You can select empty subarrays also.

Examples: 

Input: N = 3, A[] = {-4, -5, -2}
Output: 0
Explanation: Two empty subarrays are optimal with maximum sum = 0.

Input:  N = 5, A[] = {5, -2, 3, -6, 5}
Output: 11
Explanation: Optimal subarrays are {5, -2, 3} and {5} with maximum sum = 11.

 

Approach: To solve the problem follow the below idea:

This problem can be thought of as the maximum sum contiguous subarray (Kadane's Algorithm) from both left and right directions. 
By applying this algorithm, we are ensuring a maximum contiguous sum up to an index that can be stored in two vectors from front and back for finding maximum non-intersecting sum.

Follow the given steps to solve the problem:

  • Initialize two vectors frontKadane and backKadane with 0.
  • Traverse array A and implement Kadane Algorithm from left to right and store the maximum subarray sum in frontKadane[i].
  • Traverse array A and implement Kadane Algorithm from right to left and store the maximum subarray sum in backKadane[i].
  • Traverse from 0 to N and calculate maximum value of (frontKadane[i] + backKadane[i]) and store in the variable result.
  • Return the result as the final answer. 

Below is the implementation for the above approach:

C++14
// C++ code for the above approach:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

// Function to find the maximum sum
// of two non-overlapping subarray
int maxNonIntersectSum(int* A, int& N)
{
    vector<int> frontKadane;
    vector<int> backKadane(N);
    int sum1 = 0, sum2 = 0, result = 0;

    frontKadane.push_back(0);
    backKadane.push_back(0);

    // Loop to calculate the
    // maximum subarray sum till ith index
    for (int i = 0; i < N; i++) {
        sum1 += A[i];
        sum2 = max(sum1, sum2);
        sum1 = max(sum1, 0);
        frontKadane.push_back(sum2);
    }

    sum1 = 0;
    sum2 = 0;

    // Loop to calculate the
    // maximum subarray sum till ith index
    for (int i = N - 1; i >= 0; i--) {
        sum1 += A[i];
        sum2 = max(sum1, sum2);
        sum1 = max(sum1, 0);
        backKadane[i] = sum2;
    }

    for (int i = 0; i <= N; i++)
        result
            = max(result, backKadane[i]
                              + frontKadane[i]);

    // Return the maximum
    // non-overlapping subarray sum
    return result;
}

// Driver code
int main()
{
    int A[] = { 5, -2, 3, -6, 5 };
    int N = sizeof(A) / sizeof(A[0]);

    // Function call
    cout << maxNonIntersectSum(A, N);
    return 0;
}
Java
// Java code for the above approach

import java.io.*;

class GFG {

    // Function to find the maximum sum of two
    // non-overlapping subarray
    static int maxNonIntersect(int[] A, int N)
    {

        int[] frontKadane = new int[N];
        int[] backKadane = new int[N];

        int sum1 = 0, sum2 = 0, result = 0;

        // Loop to calculate the maximum subarray sum till
        // ith index
        for (int i = 0; i < N; i++) {
            sum1 += A[i];
            sum2 = Math.max(sum1, sum2);
            sum1 = Math.max(sum1, 0);
            frontKadane[i] = sum2;
        }

        sum1 = 0;
        sum2 = 0;

        // Loop to calculate the maximum subarray sum till
        // ith index
        for (int i = N - 1; i >= 0; i--) {
            sum1 += A[i];
            sum2 = Math.max(sum1, sum2);
            sum1 = Math.max(sum1, 0);
            backKadane[i] = sum2;
        }

        for (int i = 0; i < N; i++) {
            result = Math.max(result, backKadane[i]
                                          + frontKadane[i]);
        }

        // Return the maximum non-overlapping subarray sum
        return result;
    }

    public static void main(String[] args)
    {

        int[] A = { 5, -2, 3, -6, 5 };
        int N = A.length;

        // Function call
        System.out.print(maxNonIntersect(A, N));
    }
}

// This code is contributed by lokesh (lokeshmvs21).
Python3
# Python3 code for the above approach:

# Function to find the maximum sum
# of two non-overlapping subarray


def maxNonIntersectSum(A, N):
    frontKadane = []
    backKadane = [0]*N
    sum1 = 0
    sum2 = 0
    result = 0

    frontKadane.append(0)
    backKadane.append(0)

    # Loop to calculate the
    # maximum subarray sum till ith index
    for i in range(N):
        sum1 += A[i]
        sum2 = max(sum1, sum2)
        sum1 = max(sum1, 0)
        frontKadane.append(sum2)

    sum1 = 0
    sum2 = 0

    # Loop to calculate the
    # maximum subarray sum till ith index
    for i in range(N-1, 0, -1):
        sum1 += A[i]
        sum2 = max(sum1, sum2)
        sum1 = max(sum1, 0)
        backKadane[i] = sum2

    for i in range(N+1):
        result = max(result, backKadane[i] + frontKadane[i])

    # Return the maximum
    # non-overlapping subarray sum
    return result


# Driver code
if __name__ == "__main__":
    A = [5, -2, 3, -6, 5]
    N = len(A)
    # Function call
    print(maxNonIntersectSum(A, N))

# This code is contributed by Rohit Pradhan
C#
// C# code for the above approach

using System;

public class GFG {

    // Function to find the maximum sum of two
    // non-overlapping subarray
    static int maxNonIntersect(int[] A, int N)
    {

        int[] frontKadane = new int[N];
        int[] backKadane = new int[N];

        int sum1 = 0, sum2 = 0, result = 0;

        // Loop to calculate the maximum subarray sum till
        // ith index
        for (int i = 0; i < N; i++) {
            sum1 += A[i];
            sum2 = Math.Max(sum1, sum2);
            sum1 = Math.Max(sum1, 0);
            frontKadane[i] = sum2;
        }

        sum1 = 0;
        sum2 = 0;

        // Loop to calculate the maximum subarray sum till
        // ith index
        for (int i = N - 1; i >= 0; i--) {
            sum1 += A[i];
            sum2 = Math.Max(sum1, sum2);
            sum1 = Math.Max(sum1, 0);
            backKadane[i] = sum2;
        }

        for (int i = 0; i < N; i++) {
            result = Math.Max(result, backKadane[i]
                                          + frontKadane[i]);
        }

        // Return the maximum non-overlapping subarray sum
        return result;
    }

    public static void Main(string[] args)
    {

        int[] A = { 5, -2, 3, -6, 5 };
        int N = A.Length;

        // Function call
        Console.Write(maxNonIntersect(A, N));
    }
}

// This code is contributed by AnkThon
JavaScript
<script>
    // JavaScript program for above approach:

    // Function to find the maximum sum of two
    // non-overlapping subarray
   function maxNonletersect(A, N)
    {

        let frontKadane = new Array(N);
        let backKadane = new Array(N);

        let sum1 = 0, sum2 = 0, result = 0;

        // Loop to calculate the maximum subarray sum till
        // ith index
        for (let i = 0; i < N; i++) {
            sum1 += A[i];
            sum2 = Math.max(sum1, sum2);
            sum1 = Math.max(sum1, 0);
            frontKadane[i] = sum2;
        }

        sum1 = 0;
        sum2 = 0;

        // Loop to calculate the maximum subarray sum till
        // ith index
        for (let i = N - 1; i >= 0; i--) {
            sum1 += A[i];
            sum2 = Math.max(sum1, sum2);
            sum1 = Math.max(sum1, 0);
            backKadane[i] = sum2;
        }

        for (let i = 0; i < N; i++) {
            result = Math.max(result, backKadane[i]
                                          + frontKadane[i]);
        }

        // Return the maximum non-overlapping subarray sum
        return result;
    }

    // Driver Code
        let A = [ 5, -2, 3, -6, 5 ];
        let N = A.length;

        // Function call
        document.write(maxNonletersect(A, N));

// This code is contributed by code_hunt.
</script>

Output
11

Time Complexity: O(N)
Auxiliary Space: O(N)


Next Article

Similar Reads