Maximum element present in the array after performing queries to add K to range of indices [L, R]
Last Updated :
23 Jul, 2025
Given an array arr[] consisting of N integers, ( initially set to 0 ) and an array Q[], consisting of queries of the form {l, r, k}, the task for each query is to add K to the indices l to r(both inclusive). After performing all queries, return the maximum element present the array.
Example:
Input: N=10, q[] = {{1, 5, 3}, {4, 8, 7}, {6, 9, 1}}
Output: 10
Explanation:
Initially the array is ? [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Query1 {1, 5, 3} results in [3, 3, 3, 3, 3, 0, 0, 0, 0, 0]
Query2 {4, 8, 7} results in [3, 3, 3, 10, 10, 7, 7, 7, 0, 0]
Query2 {6, 9, 1} results in [3, 3, 3, 10, 10, 8, 8, 8, 1, 0]
Maximum value in the updated array = 10
Approach: Follow the steps below to solve the problem.
- Traverse over the vector of queries and for each query {l, r, k}
- Add k to a[l] and subtract k from a[r+1]
- Initialize variable x = 0 to store the running sum and m = INT_MIN to store the maximum value
- Traverse the array, add elements to x, and update m.
- Print the maximum value m
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the max sum
// after processing q queries
int max_sum(int a[],
vector<pair<pair<int, int>, int> > v,
int q, int n)
{
// Store the cumulative sum
int x = 0;
// Store the maximum sum
int m = INT_MIN;
// Iterate over the range 0 to q
for (int i = 0; i < q; i++) {
// Variables to extract
// values from vector
int p, q, k;
p = v[i].first.first;
q = v[i].first.second;
k = v[i].second;
a[p] += k;
if (q + 1 <= n)
a[q + 1] -= k;
}
// Iterate over the range [1, n]
for (int i = 1; i <= n; i++)
{
// Calculate cumulative sum
x += a[i];
// Calculate maximum sum
m = max(m, x);
}
// Return the maximum sum after q queries
return m;
}
// Driver code
int main()
{
// Stores the size of array
// and number of queries
int n = 10, q = 3;
// Stores the sum
int a[n + 5] = { 0 };
// Storing input queries
vector<pair<pair<int, int>, int> > v(q);
v[0].first.first = 1;
v[0].first.second = 5;
v[0].second = 3;
v[1].first.first = 4;
v[1].first.second = 8;
v[1].second = 7;
v[2].first.first = 6;
v[2].first.second = 9;
v[2].second = 1;
// Function call to find the maximum sum
cout << max_sum(a, v, q, n);
return 0;
}
Java
// Java program for the above approach
import java.lang.*;
import java.util.*;
class GFG{
// Function to find the max sum
// after processing q queries
static int max_sum(int a[],
ArrayList<ArrayList<Integer>> v,
int q, int n)
{
// Store the cumulative sum
int x = 0;
// Store the maximum sum
int m = Integer.MIN_VALUE;
// Iterate over the range 0 to q
for(int i = 0; i < q; i++)
{
// Variables to extract
// values from vector
int p, qq, k;
p = v.get(i).get(0);
qq = v.get(i).get(1);
k = v.get(i).get(2);
a[p] += k;
if (qq + 1 <= n)
a[qq + 1] -= k;
}
// Iterate over the range [1, n]
for(int i = 1; i <= n; i++)
{
// Calculate cumulative sum
x += a[i];
// Calculate maximum sum
m = Math.max(m, x);
}
// Return the maximum sum after q queries
return m;
}
// Driver code
public static void main(String[] args)
{
// Stores the size of array
// and number of queries
int n = 10, q = 3;
// Stores the sum
int[] a = new int[n + 5];
// Storing input queries
ArrayList<ArrayList<Integer>> v= new ArrayList<>();
for(int i = 0; i < q; i++)
v.add(new ArrayList<>());
v.get(0).add(1);
v.get(0).add(5);
v.get(0).add(3);
v.get(1).add(4);
v.get(1).add(8);
v.get(1).add(7);
v.get(2).add(6);
v.get(2).add(9);
v.get(2).add(1);
// Function call to find the maximum sum
System.out.println(max_sum(a, v, q, n));
}
}
// This code is contributed by offbeat
Python3
# Python program for the above approach
# Function to find the max sum
# after processing q queries
def max_sum(a, v, q, n):
# Store the cumulative sum
x = 0;
# Store the maximum sum
m = -10**9;
# Iterate over the range 0 to q
for i in range(q):
# Variables to extract
# values from vector
p = v[i][0][0];
q = v[i][0][1];
k = v[i][1];
a[p] += k;
if (q + 1 <= n):
a[q + 1] -= k;
# Iterate over the range [1, n]
for i in range(1, n + 1):
# Calculate cumulative sum
x += a[i];
# Calculate maximum sum
m = max(m, x);
# Return the maximum sum after q queries
return m;
# Driver code
# Stores the size of array
# and number of queries
n = 10
q = 3;
# Stores the sum
a = [0] * (n + 5);
# Storing input queries
v = [[[0 for i in range(2)] for x in range(2)] for z in range(q)]
v[0][0][0] = 1;
v[0][0][1] = 5;
v[0][1] = 3;
v[1][0][0] = 4;
v[1][0][1] = 8;
v[1][1] = 7;
v[2][0][0] = 6;
v[2][0][1] = 9;
v[2][1] = 1;
# Function call to find the maximum sum
print(max_sum(a, v, q, n));
# This code is contributed by _saurabh_jaiswal
C#
using System;
using System.Collections.Generic;
class GFG
{
// Function to find the max sum
// after processing q queries
static int max_sum(int[] a,
List<List<int>> v,
int q, int n)
{
// Store the cumulative sum
int x = 0;
// Store the maximum sum
int m = int.MinValue;
// Iterate over the range 0 to q
for (int i = 0; i < q; i++)
{
// Variables to extract
// values from vector
int p, qq, k;
p = v[i][0];
qq = v[i][1];
k = v[i][2];
a[p] += k;
if (qq + 1 <= n)
a[qq + 1] -= k;
}
// Iterate over the range [1, n]
for (int i = 1; i <= n; i++)
{
// Calculate cumulative sum
x += a[i];
// Calculate maximum sum
m = Math.Max(m, x);
}
// Return the maximum sum after q queries
return m;
}
// Driver code
public static void Main(string[] args)
{
// Stores the size of array
// and number of queries
int n = 10, q = 3;
// Stores the sum
int[] a = new int[n + 5];
// Storing input queries
List<List<int>> v = new List<List<int>>();
for (int i = 0; i < q; i++)
v.Add(new List<int>());
v[0].Add(1);
v[0].Add(5);
v[0].Add(3);
v[1].Add(4);
v[1].Add(8);
v[1].Add(7);
v[2].Add(6);
v[2].Add(9);
v[2].Add(1);
// Function call to find the maximum sum
Console.WriteLine(max_sum(a, v, q, n));
}
}
JavaScript
<script>
// Javascript program for the above approach
// Function to find the max sum
// after processing q queries
function max_sum(a, v, q, n) {
// Store the cumulative sum
let x = 0;
// Store the maximum sum
let m = Number.MIN_SAFE_INTEGER;
// Iterate over the range 0 to q
for (let i = 0; i < q; i++) {
// Variables to extract
// values from vector
let p, q, k;
p = v[i][0][0];
q = v[i][0][1];
k = v[i][1];
a[p] += k;
if (q + 1 <= n)
a[q + 1] -= k;
}
// Iterate over the range [1, n]
for (let i = 1; i <= n; i++) {
// Calculate cumulative sum
x += a[i];
// Calculate maximum sum
m = Math.max(m, x);
}
// Return the maximum sum after q queries
return m;
}
// Driver code
// Stores the size of array
// and number of queries
let n = 10, q = 3;
// Stores the sum
let a = new Array(n + 5).fill(0);
// Storing input queries
let v = new Array(q).fill(0).map(() => new Array(2).fill(0).map(() => new Array(2).fill(0)));
v[0][0][0] = 1;
v[0][0][1] = 5;
v[0][1] = 3;
v[1][0][0] = 4;
v[1][0][1] = 8;
v[1][1] = 7;
v[2][0][0] = 6;
v[2][0][1] = 9;
v[2][1] = 1;
// Function call to find the maximum sum
document.write(max_sum(a, v, q, n));
// This code is contributed by gfgking.
</script>
Time Complexity: O(N+K) where N is the size of array and K is a number of queries
Space Complexity: O(1)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem