Maximum absolute difference of value and index sums
Last Updated :
29 Jul, 2022
Given an unsorted array A of N integers, A_{1}, A_{2}, ...., A_{N}. Return maximum value of f(i, j) for all 1 ? i, j ? N.
f(i, j) or absolute difference of two elements of an array A is defined as |A[i] - A[j]| + |i - j|, where |A| denotes the absolute value of A.
Examples:
We will calculate the value of f(i, j) for each pair
of (i, j) and return the maximum value thus obtained.
Input : A = {1, 3, -1}
Output : 5
f(1, 1) = f(2, 2) = f(3, 3) = 0
f(1, 2) = f(2, 1) = |1 - 3| + |1 - 2| = 3
f(1, 3) = f(3, 1) = |1 - (-1)| + |1 - 3| = 4
f(2, 3) = f(3, 2) = |3 - (-1)| + |2 - 3| = 5
So, we return 5.
Input : A = {3, -2, 5, -4}
Output : 10
f(1, 1) = f(2, 2) = f(3, 3) = f(4, 4) = 0
f(1, 2) = f(2, 1) = |3 - (-2)| + |1 - 2| = 6
f(1, 3) = f(3, 1) = |3 - 5| + |1 - 3| = 4
f(1, 4) = f(4, 1) = |3 - (-4)| + |1 - 4| = 10
f(2, 3) = f(3, 2) = |(-2) - 5| + |2 - 3| = 8
f(2, 4) = f(4, 2) = |(-2) - (-4)| + |2 - 4| = 4
f(3, 4) = f(4, 3) = |5 - (-4)| + |3 - 4| = 10
So, we return 10
A naive brute force approach is to calculate the value f(i, j) by iterating over all such pairs (i, j) and calculating the maximum absolute difference which is implemented below.
Implementation:
C++
// Brute force C++ program to calculate the
// maximum absolute difference of an array.
#include <bits/stdc++.h>
using namespace std;
int calculateDiff(int i, int j, int arr[])
{
// Utility function to calculate
// the value of absolute difference
// for the pair (i, j).
return abs(arr[i] - arr[j]) + abs(i - j);
}
// Function to return maximum absolute
// difference in brute force.
int maxDistance(int arr[], int n)
{
// Variable for storing the maximum
// absolute distance throughout the
// traversal of loops.
int result = 0;
// Iterate through all pairs.
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
// If the absolute difference of
// current pair (i, j) is greater
// than the maximum difference
// calculated till now, update
// the value of result.
if (calculateDiff(i, j, arr) > result)
result = calculateDiff(i, j, arr);
}
}
return result;
}
// Driver program to test the above function.
int main()
{
int arr[] = { -70, -64, -6, -56, 64,
61, -57, 16, 48, -98 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << maxDistance(arr, n) << endl;
return 0;
}
Java
// Java program to calculate the maximum
// absolute difference of an array.
public class MaximumAbsoluteDifference
{
private static int calculateDiff(int i, int j,
int[] array)
{
// Utility function to calculate
// the value of absolute difference
// for the pair (i, j).
return Math.abs(array[i] - array[j]) +
Math.abs(i - j);
}
// Function to return maximum absolute
// difference in brute force.
private static int maxDistance(int[] array)
{
// Variable for storing the maximum
// absolute distance throughout the
// traversal of loops.
int result = 0;
// Iterate through all pairs.
for (int i = 0; i < array.length; i++)
{
for (int j = i; j < array.length; j++)
{
// If the absolute difference of
// current pair (i, j) is greater
// than the maximum difference
// calculated till now, update
// the value of result.
result = Math.max(result, calculateDiff(i, j, array));
}
}
return result;
}
// Driver program to test above function
public static void main(String[] args)
{
int[] array = { -70, -64, -6, -56, 64,
61, -57, 16, 48, -98 };
System.out.println(maxDistance(array));
}
}
// This code is contributed by Harikrishnan Rajan
Python3
# Brute force Python 3 program
# to calculate the maximum
# absolute difference of an array.
def calculateDiff(i, j, arr):
# Utility function to calculate
# the value of absolute difference
# for the pair (i, j).
return abs(arr[i] - arr[j]) + abs(i - j)
# Function to return maximum
# absolute difference in
# brute force.
def maxDistance(arr, n):
# Variable for storing the
# maximum absolute distance
# throughout the traversal
# of loops.
result = 0
# Iterate through all pairs.
for i in range(0,n):
for j in range(i, n):
# If the absolute difference of
# current pair (i, j) is greater
# than the maximum difference
# calculated till now, update
# the value of result.
if (calculateDiff(i, j, arr) > result):
result = calculateDiff(i, j, arr)
return result
# Driver program
arr = [ -70, -64, -6, -56, 64,
61, -57, 16, 48, -98 ]
n = len(arr)
print(maxDistance(arr, n))
# This code is contributed by Smitha Dinesh Semwal
C#
// C# program to calculate the maximum
// absolute difference of an array.
using System;
public class MaximumAbsoluteDifference
{
private static int calculateDiff(int i, int j,
int[] array)
{
// Utility function to calculate
// the value of absolute difference
// for the pair (i, j).
return Math.Abs(array[i] - array[j]) +
Math.Abs(i - j);
}
// Function to return maximum absolute
// difference in brute force.
private static int maxDistance(int[] array)
{
// Variable for storing the maximum
// absolute distance throughout the
// traversal of loops.
int result = 0;
// Iterate through all pairs.
for (int i = 0; i < array.Length; i++)
{
for (int j = i; j < array.Length; j++)
{
// If the absolute difference of
// current pair (i, j) is greater
// than the maximum difference
// calculated till now, update
// the value of result.
result = Math.Max(result, calculateDiff(i, j, array));
}
}
return result;
}
// Driver program
public static void Main()
{
int[] array = { -70, -64, -6, -56, 64,
61, -57, 16, 48, -98 };
Console.WriteLine(maxDistance(array));
}
}
// This code is contributed by vt_m
PHP
<?php
// Brute force PHP program to
// calculate the maximum absolute
// difference of an array.
function calculateDiff($i, $j, $arr)
{
// Utility function to calculate
// the value of absolute difference
// for the pair (i, j).
return abs($arr[$i] - $arr[$j]) +
abs($i - $j);
}
// Function to return maximum
// absolute difference in brute force.
function maxDistance($arr, $n)
{
// Variable for storing the maximum
// absolute distance throughout the
// traversal of loops.
$result = 0;
// Iterate through all pairs.
for ($i = 0; $i < $n; $i++)
{
for ($j = $i; $j < $n; $j++)
{
// If the absolute difference of
// current pair (i, j) is greater
// than the maximum difference
// calculated till now, update
// the value of result.
if (calculateDiff($i, $j, $arr) > $result)
$result = calculateDiff($i, $j, $arr);
}
}
return $result;
}
// Driver Code
$arr = array( -70, -64, -6, -56, 64,
61, -57, 16, 48, -98 );
$n = sizeof($arr);
echo maxDistance($arr, $n);
// This Code is contributed by mits
?>
JavaScript
<script>
// javascript program to calculate the maximum
// absolute difference of an array.
let MAX = 256;
// Function to count the number of equal pairs
function calculateDiff(i, j, array)
{
// Utility function to calculate
// the value of absolute difference
// for the pair (i, j).
return Math.abs(array[i] - array[j]) +
Math.abs(i - j);
}
// Function to return maximum absolute
// difference in brute force.
function maxDistance(array)
{
// Variable for storing the maximum
// absolute distance throughout the
// traversal of loops.
let result = 0;
// Iterate through all pairs.
for (let i = 0; i < array.length; i++)
{
for (let j = i; j < array.length; j++)
{
// If the absolute difference of
// current pair (i, j) is greater
// than the maximum difference
// calculated till now, update
// the value of result.
result = Math.max(result, calculateDiff(i, j, array));
}
}
return result;
}
// Driver Function
let array = [-70, -64, -6, -56, 64,
61, -57, 16, 48, -98 ];
document.write(maxDistance(array));
// This code is contributed by susmitakundugoaldanga.
</script>
Time complexity: O(n2)
Auxiliary Space: O(1)
An efficient solution in O(n) time complexity can be worked out using the properties of absolute values.
f(i, j) = |A[i] - A[j]| + |i - j| can be written in 4 ways (Since we are looking at max value, we don’t even care if the value becomes negative as long as we are also covering the max value in some way).
Case 1: A[i] > A[j] and i > j
|A[i] - A[j]| = A[i] - A[j]
|i -j| = i - j
hence, f(i, j) = (A[i] + i) - (A[j] + j)
Case 2: A[i] < A[j] and i < j
|A[i] - A[j]| = -(A[i]) + A[j]
|i -j| = -(i) + j
hence, f(i, j) = -(A[i] + i) + (A[j] + j)
Case 3: A[i] > A[j] and i < j
|A[i] - A[j]| = A[i] - A[j]
|i -j| = -(i) + j
hence, f(i, j) = (A[i] - i) - (A[j] - j)
Case 4: A[i] < A[j] and i > j
|A[i] - A[j]| = -(A[i]) + A[j]
|i -j| = i - j
hence, f(i, j) = -(A[i] - i) + (A[j] - j)
Note that cases 1 and 2 are equivalent and so are cases 3 and 4 and hence we can design our algorithm only for two cases as it will cover all the possible cases.
1. Calculate the value of A[i] + i and A[i] - i for every element of the array while traversing through the array.
2. Then for the two equivalent cases, we find the maximum possible value. For that, we have to store minimum and maximum values of expressions A[i] + i and A[i] - i for all i.
3. Hence the required maximum absolute difference is maximum of two values i.e. max((A[i] + i) - (A[j] + j)) and max((A[i] - i) - (A[j] - j)). These values can be found easily in linear time.
a. For max((A[i] + i) - (A[j] + j)) Maintain two variables max1 and min1 which will store maximum and minimum values of A[i] + i respectively. max((A[i] + i) - (A[j] + j)) = max1 - min1
b. For max((A[i] - i) - (A[j] - j)). Maintain two variables max2 and min2 which will store maximum and minimum values of A[i] - i respectively. max((A[i] - i) - (A[j] - j)) = max2 - min2
Implementation using the above fast algorithm is given below.
C++
// C++ program to calculate the maximum
// absolute difference of an array.
#include <bits/stdc++.h>
using namespace std;
// Function to return maximum absolute
// difference in linear time.
int maxDistance(int arr[], int n)
{
// max and min variables as described
// in algorithm.
int max1 = INT_MIN, min1 = INT_MAX;
int max2 = INT_MIN, min2 = INT_MAX;
for (int i = 0; i < n; i++) {
// Updating max and min variables
// as described in algorithm.
max1 = max(max1, arr[i] + i);
min1 = min(min1, arr[i] + i);
max2 = max(max2, arr[i] - i);
min2 = min(min2, arr[i] - i);
}
// Calculating maximum absolute difference.
return max(max1 - min1, max2 - min2);
}
// Driver program to test the above function.
int main()
{
int arr[] = { -70, -64, -6, -56, 64,
61, -57, 16, 48, -98 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << maxDistance(arr, n) << endl;
return 0;
}
Java
// Java program to calculate the maximum
// absolute difference of an array.
public class MaximumAbsoluteDifference
{
// Function to return maximum absolute
// difference in linear time.
private static int maxDistance(int[] array)
{
// max and min variables as described
// in algorithm.
int max1 = Integer.MIN_VALUE;
int min1 = Integer.MAX_VALUE;
int max2 = Integer.MIN_VALUE;
int min2 = Integer.MAX_VALUE;
for (int i = 0; i < array.length; i++)
{
// Updating max and min variables
// as described in algorithm.
max1 = Math.max(max1, array[i] + i);
min1 = Math.min(min1, array[i] + i);
max2 = Math.max(max2, array[i] - i);
min2 = Math.min(min2, array[i] - i);
}
// Calculating maximum absolute difference.
return Math.max(max1 - min1, max2 - min2);
}
// Driver program to test above function
public static void main(String[] args)
{
int[] array = { -70, -64, -6, -56, 64,
61, -57, 16, 48, -98 };
System.out.println(maxDistance(array));
}
}
// This code is contributed by Harikrishnan Rajan
Python3
# Python program to
# calculate the maximum
# absolute difference
# of an array.
# Function to return
# maximum absolute
# difference in linear time.
def maxDistance(array):
# max and min variables as described
# in algorithm.
max1 = -2147483648
min1 = +2147483647
max2 = -2147483648
min2 = +2147483647
for i in range(len(array)):
# Updating max and min variables
# as described in algorithm.
max1 = max(max1, array[i] + i)
min1 = min(min1, array[i] + i)
max2 = max(max2, array[i] - i)
min2 = min(min2, array[i] - i)
# Calculating maximum absolute difference.
return max(max1 - min1, max2 - min2)
# Driver program to
# test above function
array = [ -70, -64, -6, -56, 64,
61, -57, 16, 48, -98 ]
print(maxDistance(array))
# This code is contributed
# by Anant Agarwal.
C#
// C# program to calculate the maximum
// absolute difference of an array.
using System;
public class MaximumAbsoluteDifference
{
// Function to return maximum absolute
// difference in linear time.
private static int maxDistance(int[] array)
{
// max and min variables as described
// in algorithm.
int max1 = int.MinValue ;
int min1 = int.MaxValue ;
int max2 = int.MinValue ;
int min2 =int.MaxValue ;
for (int i = 0; i < array.Length; i++)
{
// Updating max and min variables
// as described in algorithm.
max1 = Math.Max(max1, array[i] + i);
min1 = Math.Min(min1, array[i] + i);
max2 = Math.Max(max2, array[i] - i);
min2 = Math.Min(min2, array[i] - i);
}
// Calculating maximum absolute difference.
return Math.Max(max1 - min1, max2 - min2);
}
// Driver program
public static void Main()
{
int[] array = { -70, -64, -6, -56, 64,
61, -57, 16, 48, -98 };
Console.WriteLine(maxDistance(array));
}
}
// This code is contributed by vt_m
PHP
<?php
// PHP program to calculate the maximum
// absolute difference of an array.
// Function to return maximum absolute
// difference in linear time.
function maxDistance( $arr, $n)
{
// max and min variables as
// described in algorithm.
$max1 = PHP_INT_MIN; $min1 =
PHP_INT_MAX;
$max2 = PHP_INT_MIN;$min2 =
PHP_INT_MAX;
for($i = 0; $i < $n; $i++)
{
// Updating max and min variables
// as described in algorithm.
$max1 = max($max1, $arr[$i] + $i);
$min1 = min($min1, $arr[$i] + $i);
$max2 = max($max2, $arr[$i] - $i);
$min2 = min($min2, $arr[$i] - $i);
}
// Calculating maximum
// absolute difference.
return max($max1 - $min1,
$max2 - $min2);
}
// Driver Code
$arr = array(-70, -64, -6, -56, 64,
61, -57, 16, 48, -98);
$n = count($arr);
echo maxDistance($arr, $n);
// This code is contributed by anuj_67.
?>
JavaScript
<script>
// JavaScript program to calculate the maximum
// absolute difference of an array.
// Function to return maximum absolute
// difference in linear time.
function maxDistance(array)
{
// max and min variables as described
// in algorithm.
let max1 = Number.MIN_VALUE;
let min1 = Number.MAX_VALUE;
let max2 = Number.MIN_VALUE;
let min2 = Number.MAX_VALUE;
for (let i = 0; i < array.length; i++)
{
// Updating max and min variables
// as described in algorithm.
max1 = Math.max(max1, array[i] + i);
min1 = Math.min(min1, array[i] + i);
max2 = Math.max(max2, array[i] - i);
min2 = Math.min(min2, array[i] - i);
}
// Calculating maximum absolute difference.
return Math.max(max1 - min1, max2 - min2);
}
let array =
[ -70, -64, -6, -56, 64, 61, -57, 16, 48, -98 ];
document.write(maxDistance(array));
</script>
Time Complexity: O(n)
Auxiliary Space: O(1)
Similar Reads
Sum of minimum absolute differences in an array
Given an array of n distinct integers. The task is to find the sum of minimum absolute difference of each array element. For an element arr[i] present at index i in the array, its minimum absolute difference is calculated as: Min absolute difference (arr[i]) = min(abs(arr[i] - arr[j])), where 0 <
7 min read
Maximum sum of absolute difference of any permutation
Given an array, we need to find the maximum sum of the absolute difference of any permutation of the given array. Examples: Input : { 1, 2, 4, 8 } Output : 18 Explanation : For the given array there are several sequence possible like : {2, 1, 4, 8} {4, 2, 1, 8} and some more. Now, the absolute diffe
14 min read
Minimum and Maximum sum of absolute differences of pairs
Given an array of N integers where N is even, find the minimum and maximum sum of absolute difference of N/2 pairs formed by pairing every element with one other element. Examples: Input: a[] = {10, -10, 20, -40} Output: min_sum = 40, max_sum = 80 Explanation: Pairs selected for minimum sum (-10, -4
8 min read
Minimize the maximum value of the absolute difference
Given array A[] of size N (1 <= N <= 105). The following operation should be performed until array A[] is not empty. choose three integers X, Y, and Z, Take out an element from array A[] (1 <= A[i] <= 109), and choose one integer out of the chosen three integers X, Y, and Z record absolu
10 min read
Maximum absolute difference between sum of subarrays of size K
Given an array arr[] of size N and an integer K, the task is to find maximum absolute difference between the sum of subarrays of size K.Examples : Input: arr[] = {-2, -3, 4, -1, -2, 1, 5, -3}, K = 3 Output: 6 Explanation:: Sum of subarray (-2, -3, 4) = -1 Sum of subarray (-3, 4, -1) = 0 Sum of subar
13 min read
Maximum absolute difference between any two level sum in a N-ary Tree
Given an N-ary Tree having N nodes with positive and negative values and (N - 1) edges, the task is to find the maximum absolute difference of level sum in it. Examples: Input: N = 8, Edges[][2] = {{0, 1}, {0, 2}, {0, 3}, {1, 4}, {1, 5}, {3, 6}, {6, 7}}, Value[] = {4,2, 3, -5,-1, 3, -2, 6}, Below is
9 min read
Sum of absolute difference of maximum and minimum of all subarrays
Given an array arr containing N integers, the task is to find the sum of the absolute difference of maximum and minimum of all subarrays. Example: Input: arr[] = {1, 4, 3}Output: 7Explanation: The following are the six subarrays:[1] : maximum - minimum= 1 - 1 = 0[4] : maximum - minimum= 4 - 4 = 0[3]
5 min read
Array element with minimum sum of absolute differences | Set 2
Given an array arr[] consisting of N positive integers, the task is to find an array element X such that sum of its absolute differences with every array element is minimum. Examples: Input: arr[] = {1, 2, 3, 4, 5}Output: 3Explanation: For element arr[0](= 1): |(1 - 1)| + |(2 - 1)| + |(3 - 1)| + |(4
7 min read
Maximum absolute difference between any two level sum in a Binary Tree
Given a Binary Tree having positive and negative nodes, the task is to find the maximum absolute difference of level sum in it. Examples: Input: 4 / \ 2 -5 / \ / \ -1 3 -2 6 Output: 9 Explanation: Sum of all nodes of 0 level is 4 Sum of all nodes of 1 level is -3 Sum of all nodes of 2 level is 6 Hen
10 min read
Maximum absolute difference between sum of two contiguous sub-arrays
Given an array of integers, find two non-overlapping contiguous sub-arrays such that the absolute difference between the sum of two sub-arrays is maximum. Example: Input: [-2, -3, 4, -1, -2, 1, 5, -3] Output: 12 Two subarrays are [-2, -3] and [4, -1, -2, 1, 5] Input: [2, -1, -2, 1, -4, 2, 8] Output:
15+ min read