Maximize the last Array element as per the given conditions
Last Updated :
29 May, 2021
Given an array arr[] consisting of N integers, rearrange the array such that it satisfies the following conditions:
- arr[0] must be 1.
- Difference between adjacent array elements should not exceed 1, that is, arr[i] - arr[i-1] ? 1 for all 1 ? i < N.
The permissible operations are as follows:
- Rearrange the elements in any way.
- Reduce any element to any number ? 1.
The task is to find the maximum possible value that can be placed at the last index of the array.
Examples:
Input: arr[] = {3, 1, 3, 4}
Output: 4
Explanation:
Subtracting 1 from the first element modifies the array to {2, 1, 3, 4}.
Swapping the first two elements modifies the array to {1, 2, 3, 4}.
Therefore, maximum value placed at the last index is 4.
Input: arr[] = {1, 1, 1, 1}
Output: 1
Approach:
To solve the given problem, sort the given array and balance it according to the given condition starting from left towards right. Follow the below steps to solve the problem:
- Sort the array in ascending order.
- If the first element is not 1, make it 1.
- Traverse the array over the indices [1, N - 1) and check if every adjacent element has a difference of ? 1.
- If not, decrement the value till the difference becomes ? 1.
- Return the last element of the array.
Below is the implementation of the above problem:
C++
// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the maximum possible value
// that can be placed at the last index
int maximizeFinalElement(int arr[], int n)
{
// Sort array in ascending order
sort(arr, arr + n);
// If the first element
// is not equal to 1
if (arr[0] != 1)
arr[0] = 1;
// Traverse the array to make
// difference between adjacent
// elements <=1
for (int i = 1; i < n; i++) {
if (arr[i] - arr[i - 1] > 1) {
arr[i] = arr[i - 1] + 1;
}
}
return arr[n - 1];
}
// Driver Code
int main()
{
int n = 4;
int arr[] = { 3, 1, 3, 4 };
int max = maximizeFinalElement(arr, n);
cout << max;
return 0;
}
Java
// Java program to implement
// the above approach
import java.io.*;
import java.util.*;
class GFG{
// Function to find the maximum possible value
// that can be placed at the last index
public static int maximizeFinalElement(int arr[],
int n)
{
// Sort the array elements
// in ascending order
Arrays.sort(arr);
// If the first element is
// is not equal to 1
if (arr[0] != 1)
arr[0] = 1;
// Traverse the array to make
// difference between adjacent
// elements <=1
for(int i = 1; i < n; i++)
{
if (arr[i] - arr[i - 1] > 1)
{
arr[i] = arr[i - 1] + 1;
}
}
return arr[n - 1];
}
// Driver Code
public static void main (String[] args)
{
int n = 4;
int arr[] = { 3, 1, 3, 4 };
int max = maximizeFinalElement(arr, n);
System.out.print(max);
}
}
Python3
# Python3 program to implement
# the above approach
# Function to find the maximum possible value
# that can be placed at the last index
def maximizeFinalElement(arr, n):
# Sort the array elements
# in ascending order
arr.sort();
# If the first element is
# is not equal to 1
if (arr[0] != 1):
arr[0] = 1;
# Traverse the array to make
# difference between adjacent
# elements <=1
for i in range(1, n):
if (arr[i] - arr[i - 1] > 1):
arr[i] = arr[i - 1] + 1;
return arr[n - 1];
# Driver Code
if __name__ == '__main__':
n = 4;
arr = [3, 1, 3, 4];
max = maximizeFinalElement(arr, n);
print(max);
# This code is contributed by Princi Singh
C#
// C# Program to implement
// the above approach
using System;
class GFG{
// Function to find the maximum possible value
// that can be placed at the last index
public static int maximizeFinalElement(int []arr,
int n)
{
// Sort the array elements
// in ascending order
Array.Sort(arr);
// If the first element is
// is not equal to 1
if (arr[0] != 1)
arr[0] = 1;
// Traverse the array to make
// difference between adjacent
// elements <=1
for (int i = 1; i < n; i++)
{
if (arr[i] - arr[i - 1] > 1)
{
arr[i] = arr[i - 1] + 1;
}
}
return arr[n - 1];
}
// Driver Code
public static void Main(String[] args)
{
int n = 4;
int []arr = { 3, 1, 3, 4 };
int max = maximizeFinalElement(arr, n);
Console.WriteLine(max);
}
}
// This code is contributed by sapnasingh4991
JavaScript
<script>
// JavaScript Program to implement
// the above approach
// Function to find the maximum possible value
// that can be placed at the last index
function maximizeFinalElement(arr, n)
{
// Sort array in ascending order
arr.sort((a, b) => a - b);
// If the first element
// is not equal to 1
if (arr[0] != 1)
arr[0] = 1;
// Traverse the array to make
// difference between adjacent
// elements <=1
for (let i = 1; i < n; i++) {
if (arr[i] - arr[i - 1] > 1) {
arr[i] = arr[i - 1] + 1;
}
}
return arr[n - 1];
}
// Driver Code
let n = 4;
let arr = [ 3, 1, 3, 4 ];
let max = maximizeFinalElement(arr, n);
document.write(max);
// This code is contributed by Surbhi Tyagi.
</script>
Time Complexity: O(NlogN)
Auxiliary Space: O(N)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem