Maximize given function by selecting equal length substrings from given Binary Strings
Last Updated :
06 Nov, 2023
Given two binary strings s1 and s2. The task is to choose substring from s1 and s2 say sub1 and sub2 of equal length such that it maximizes the function:
fun(s1, s2) = len(sub1) / (2xor(sub1, sub2))
Examples:
Input: s1= "1101", s2= "1110"
Output: 3
Explanation: Below are the substrings chosen from s1 and s2
Substring chosen from s1 -> "110"
Substring chosen from s2 -> "110"
Therefore, fun(s1, s2) = 3/ (2xor(110, 110)) = 3, which is maximum possible.
Input: s1= "1111", s2= "1000"
Output: 1
Approach: In order to maximize the given function large substrings needed to be chosen with minimum XOR. To minimize the denominator, choose substrings in a way such that XOR of sub1 and sub2 is always 0 so that the denominator term will always be 1 (20). So for that, find the longest common substring from the two strings s1 and s2, and print its length that would be the required answer.
Below is the implementation of above approach:
C++
// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
int dp[1000][1000];
// Function to find longest common substring.
int lcs(string s, string k, int n, int m)
{
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= m; j++) {
if (i == 0 or j == 0) {
dp[i][j] = 0;
}
else if (s[i - 1] == k[j - 1]) {
dp[i][j] = 1 + dp[i - 1][j - 1];
}
else {
dp[i][j] = max(dp[i - 1][j],
dp[i][j - 1]);
}
}
}
// Return the result
return dp[n][m];
}
// Driver Code
int main()
{
string s1 = "1110";
string s2 = "1101";
cout << lcs(s1, s2,
s1.size(), s2.size());
return 0;
}
Java
// Java program for above approach
class GFG{
static int dp[][] = new int[1000][1000];
// Function to find longest common substring.
static int lcs(String s, String k, int n, int m)
{
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= m; j++) {
if (i == 0 || j == 0) {
dp[i][j] = 0;
}
else if (s.charAt(i - 1) == k.charAt(j - 1)) {
dp[i][j] = 1 + dp[i - 1][j - 1];
}
else {
dp[i][j] = Math.max(dp[i - 1][j],
dp[i][j - 1]);
}
}
}
// Return the result
return dp[n][m];
}
// Driver Code
public static void main(String [] args)
{
String s1 = "1110";
String s2 = "1101";
System.out.print(lcs(s1, s2,
s1.length(), s2.length()));
}
}
// This code is contributed by AR_Gaurav
Python3
# Python3 program for above approach
import numpy as np;
dp = np.zeros((1000,1000));
# Function to find longest common substring.
def lcs( s, k, n, m) :
for i in range(n + 1) :
for j in range(m + 1) :
if (i == 0 or j == 0) :
dp[i][j] = 0;
elif (s[i - 1] == k[j - 1]) :
dp[i][j] = 1 + dp[i - 1][j - 1];
else :
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
# Return the result
return dp[n][m];
# Driver Code
if __name__ == "__main__" :
s1 = "1110";
s2 = "1101";
print(lcs(s1, s2,len(s1), len(s2)));
# This code is contributed by AnkThon
C#
// C# program for above approach
using System;
public class GFG{
static int [,]dp = new int[1000,1000];
// Function to find longest common substring.
static int lcs(string s, string k, int n, int m)
{
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= m; j++) {
if (i == 0 || j == 0) {
dp[i, j] = 0;
}
else if (s[i - 1] == k[j - 1]) {
dp[i, j] = 1 + dp[i - 1, j - 1];
}
else {
dp[i, j] = Math.Max(dp[i - 1, j],
dp[i, j - 1]);
}
}
}
// Return the result
return dp[n, m];
}
// Driver Code
public static void Main(string [] args)
{
string s1 = "1110";
string s2 = "1101";
Console.Write(lcs(s1, s2, s1.Length, s2.Length));
}
}
// This code is contributed by AnkThon
JavaScript
<script>
// JavaScript program for above approach
var dp = new Array(1000);
for (var i = 0; i < 1000; i++) {
dp[i] = new Array(1000);
}
// Function to find longest common substring.
function lcs( s, k, n, m)
{
for (var i = 0; i <= n; i++) {
for (var j = 0; j <= m; j++) {
if (i == 0 || j == 0) {
dp[i][j] = 0;
}
else if (s[i - 1] == k[j - 1]) {
dp[i][j] = 1 + dp[i - 1][j - 1];
}
else {
dp[i][j] = Math.max(dp[i - 1][j],
dp[i][j - 1]);
}
}
}
// Return the result
return dp[n][m];
}
// Driver Code
var s1 = "1110";
var s2 = "1101";
document.write(lcs(s1, s2, s1.length, s2.length))
// This code is contributed by AnkThon
</script>
Time Complexity: O(N*M), where N is the size of s1 and M is the size of s2.
Auxiliary Space: O(N*M), where N is the size of s1 and M is the size of s2.
Approach2: Using memoised version of dynamic programming
In order to maximize the given function large substrings needed to be chosen with minimum XOR. To minimize the denominator, choose substrings in a way such that XOR of sub1 and sub2 is always 0 so that the denominator term will always be 1 (20). So for that, find the longest common substring from the two strings s1 and s2, and print its length that would be the required answer.
To find longest common substring we will go with memoisation approach.
Algorithm:
- Take two strings as input: s1 and s2.
- Initialize a 2D array dp of size n+1 by m+1 with -1, where n is the length of s1 and m is the length of s2.
- Define a function lcs(s1, s2, n, m) that takes s1, s2, n, and m as input.
- If n or m is equal to 0, return 0 as the base case.
- If dp[n][m] is not equal to -1, return dp[n][m].
- If the last characters of s1 and s2 match, then return 1 + lcs(s1, s2, n-1, m-1).
- Otherwise, return the maximum of lcs(s1, s2, n-1, m) and lcs(s1, s2, n, m-1).
- In the main function, call lcs(s1, s2, n, m) and print the result.
Below is the implementation of above approach:
C++
// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
int dp[1000][1000];
// Function to find longest common substring.
int lcs(string s, string k, int n, int m)
{
// base case
if (n == 0 or m == 0) {
return 0;
}
// if value is already computed
// return that value
if(dp[n][m] != -1)
return dp[n][m];
// if characters at (n-1) and (m-1)th position
// of the strings are equal
if (s[n - 1] == k[m - 1]) {
return dp[n][m] = 1 + lcs(s, k, n - 1, m - 1);
}
// if characters at (n-1) and (m-1)th position
// of the strings are not equal,
// return maximum of LCS of two substrings after
// excluding last character of each string
return dp[n][m] = max(lcs(s, k, n - 1, m),
lcs(s, k, n, m - 1));
}
// Driver Code
int main()
{
string s1 = "1110";
string s2 = "1101";
// initialise dp with -1
memset(dp, -1, sizeof(dp));
cout << lcs(s1, s2,
s1.size(), s2.size());
return 0;
}
// This code is contributed by Chandramani Kumar
Java
import java.util.Arrays;
public class GFG {
static int[][] dp;
// Function to find longest common substring.
static int lcs(String s, String k, int n, int m) {
// base case
if (n == 0 || m == 0) {
return 0;
}
// if value is already computed, return that value
if (dp[n][m] != -1) {
return dp[n][m];
}
// if characters at (n-1) and (m-1)th position
// of the strings are equal
if (s.charAt(n - 1) == k.charAt(m - 1)) {
return dp[n][m] = 1 + lcs(s, k, n - 1, m - 1);
}
// if characters at (n-1) and (m-1)th position
// of the strings are not equal,
// return the maximum of LCS of two substrings after
// excluding the last character of each string
return dp[n][m] = Math.max(lcs(s, k, n - 1, m), lcs(s, k, n, m - 1));
}
// Driver code
public static void main(String[] args) {
String s1 = "1110";
String s2 = "1101";
// initialize dp with -1
dp = new int[s1.length() + 1][s2.length() + 1];
for (int[] row : dp) {
Arrays.fill(row, -1);
}
System.out.println(lcs(s1, s2, s1.length(), s2.length()));
}
}
Python3
# Function to find the longest common substring
def lcs(s, k, n, m):
# Base case
if n == 0 or m == 0:
return 0
# If value is already computed, return that value
if dp[n][m] != -1:
return dp[n][m]
# If characters at (n-1) and (m-1) positions of the strings are equal
if s[n - 1] == k[m - 1]:
dp[n][m] = 1 + lcs(s, k, n - 1, m - 1)
return dp[n][m]
# If characters at (n-1) and (m-1) positions of the strings are not equal,
# return the maximum of LCS of two substrings after excluding the last character of each string
dp[n][m] = max(lcs(s, k, n - 1, m), lcs(s, k, n, m - 1))
return dp[n][m]
# Driver Code
s1 = "1110"
s2 = "1101"
# Initialize dp with -1
dp = [[-1 for _ in range(len(s2) + 1)] for _ in range(len(s1) + 1)]
print(lcs(s1, s2, len(s1), len(s2)))
C#
using System;
public class GFG
{
static int[,] dp;
// Function to find longest common substring.
public static int LCS(string s, string k, int n, int m)
{
// Base case
if (n == 0 || m == 0)
{
return 0;
}
// If value is already computed, return that value
if (dp[n, m] != -1)
return dp[n, m];
// If characters at (n-1) and (m-1)th position of the strings are equal
if (s[n - 1] == k[m - 1])
{
return dp[n, m] = 1 + LCS(s, k, n - 1, m - 1);
}
// If characters at (n-1) and (m-1)th position of the strings are not equal,
// return maximum of LCS of two substrings after excluding the last character of each string
return dp[n, m] = Math.Max(LCS(s, k, n - 1, m), LCS(s, k, n, m - 1));
}
public static void Main(string[] args)
{
string s1 = "1110";
string s2 = "1101";
// Initialize dp with -1
dp = new int[s1.Length + 1, s2.Length + 1];
for (int i = 0; i <= s1.Length; i++)
{
for (int j = 0; j <= s2.Length; j++)
{
dp[i, j] = -1;
}
}
Console.WriteLine(LCS(s1, s2, s1.Length, s2.Length));
}
}
JavaScript
// Function to find longest common substring.
function lcs(s, k, n, m) {
// Initialize dp with -1
const dp = new Array(n + 1).fill().map(() => new Array(m + 1).fill(-1));
// Base case
if (n === 0 || m === 0) {
return 0;
}
// If value is already computed, return that value
if (dp[n][m] !== -1) {
return dp[n][m];
}
// If characters at (n-1) and (m-1)th position of the strings are equal
if (s[n - 1] === k[m - 1]) {
return dp[n][m] = 1 + lcs(s, k, n - 1, m - 1);
}
// If characters at (n-1) and (m-1)th position of the strings are not equal,
// return the maximum of LCS of two substrings after excluding the last character of each string
return dp[n][m] = Math.max(lcs(s, k, n - 1, m),
lcs(s, k, n, m - 1));
}
// Driver Code
function main() {
const s1 = "1110";
const s2 = "1101";
const n = s1.length;
const m = s2.length;
console.log(lcs(s1, s2, n, m));
}
main();
Time Complexity: O(N*M), where N is the size of s1 and M is the size of s2.
Auxiliary Space: O(N*M), where N is the size of s1 and M is the size of s2.
Similar Reads
Maximize sum by splitting given binary strings based on given conditions Given two binary strings str1 and str2 each of length N, the task is to split the strings in such a way that the sum is maximum with given conditions. Split both strings at the same position into equal length substrings.If both the substrings have only 0's then the value of that substring to be adde
7 min read
Maximize count of 0s in left and 1s in right substring by splitting given Binary string Given a binary string str, the task is to split the given binary string at any index into two non-empty substrings such that the sum of counts of 0s in the left substring and 1s in the right substring is maximum. Print the sum of such 0s and 1s in the end.Examples: Input: str = "0011110011" Output:
6 min read
Maximum length of consecutive 1's in a binary string in Python using Map function We are given a binary string containing 1's and 0's. Find the maximum length of consecutive 1's in it. Examples: Input : str = '11000111101010111' Output : 4 We have an existing solution for this problem please refer to Maximum consecutive oneâs (or zeros) in a binary array link. We can solve this p
1 min read
Substring of length K having maximum frequency in the given string Given a string str, the task is to find the substring of length K which occurs the maximum number of times. If more than one string occurs maximum number of times, then print the lexicographically smallest substring. Examples: Input: str = "bbbbbaaaaabbabababa", K = 5Output: ababaExplanation:The sub
14 min read
Find an N-length Binary String having maximum sum of elements from given ranges Given an array of pairs ranges[] of size M and an integer N, the task is to find a binary string of length N such that the sum of elements of the string from the given ranges is maximum possible. Examples: Input: N = 5, M = 3, ranges[] = {{1, 3}, {2, 4}, {2, 5}}Output: 01100Explanation:Range [1, 3]:
5 min read
Minimize hamming distance in Binary String by setting only one K size substring bits Given two binary strings S and T of length N and a positive integer K. Initially, all characters of T are '0'. The task is to find the minimum Hamming distance after choosing a substring of size K and making all elements of string T as '1' only once. Examples: Input: S = "101", K = 2Output: 1Explana
7 min read