CBSE Class 8th Maths Notes cover all chapters from the updated NCERT textbooks, including topics such as Rational Numbers, Algebraic Expressions, Practical Geometry, and more. Class 8 is an essential time for students as subjects become harder to cope with. At GeeksforGeeks, we provide easy-to-understand Class 8th Maths Notes for quick revision of essential concepts.
Additionally, there are NCERT CBSE class 8 maths notes and RD Sharma problems, as well as 1500+ Most Asked Questions and Chapterwise Important Formulas to improve students' basic knowledge. These NCERT CBSE class 8 maths notes are an excellent resource to prepare for the final exams.

CBSE Class 8th Maths Notes Chapters List (2023)
All the Chapters covered in Class 8th Maths NCERT textbooks are listed below. Here is the detailed chapter-wise information about the Class 8th Maths provided by CBSE. Additionally, this also contains all the major topics that have been covered in Class 8th Maths NCERT textbooks and Class 8th CBSE Maths Syllabus.
CBSE Class 8th Maths Notes Chapters List |
---|
Chapter 1: Rational Numbers | Chapter 9: Algebraic Expressions and Identities |
Chapter 2: Linear Equations in One Variable | Chapter 10: Visualising Solid Shapes |
Chapter 3: Understanding Quadrilaterals | Chapter 11: Mensuration |
Chapter 4: Practical Geometry | Chapter 12: Exponents and Powers |
Chapter 5: Data Handling | Chapter 13: Direct and Inverse Proportions |
Chapter 6: Squares and Square Roots | Chapter 14: Factorisation |
Chapter 7: Cubes and Cube Roots | Chapter 15: Introduction to Graphs |
Chapter 8: Comparing Quantities | Chapter 16: Playing with Numbers |
Deleted Chapters from NCERT Class 8th Maths Notes (2023-2024)
The most recent CBSE Class 8th Mathematics syllabus has been changed and reduced by 30% for the upcoming annual assessment in the academic year 2023-2024, you can find the list of all deleted chapters/topics in the table below:
Chapters Deleted from NCERT Class 8 Maths Textbook (2023-24) |
---|
Chapter 12: Exponents and Powers |
Chapter 13: Direct and Inverse Proportions |
Chapter 1: Rational Numbers
Any number that can be described in p/q form where q is not equal to zero is called a rational number. A rational number is a kind of real number. Or in other words, Any fraction with non-zero denominators is a rational number. Examples of rational numbers are 1/2, 1/5, 3/4, and so on. The number “0” is also a rational number, as we can define it in many forms such as 0/1, 0/2, 0/3, etc. But, 1/0, 2/0, 3/0, etc. are not rational, since they give us infinite values.
In this chapter, you will learn more about Rational Numbers, the representation of rational numbers on the number line, and rational numbers between two rational numbers. To represent rational numbers on a number line, we need to streamline and write in the decimal form first.
CBSE Class 8th Maths Notes Chapter 1 Rational Numbers |
---|
|
- Properties of Rational Numbers
- Closure Property
- Commutative Property
- Identity Property
- Inverse Property
- Associative Property
- Distributive Property
|
|
|
|
|
More Resources for Class 8th Maths Chapter 1 Rational Numbers |
|
Important Rules Used in CBSE Class 8 Maths Notes Chapter 1 Rational Numbers:
For any rational numbers a, b, and c,
- Multiplicative Inverse: (a ⁄ b) × (b/a) = 1.
- Additive Inverse: a + (-a) = (-a) + a = 0.
- Closure Property – Addition: a + b is also a rational number.
- Closure Property – Multiplication: a × b is also a rational number.
- Commutative Property – Addition: a + b = b + a.
- Commutative Property – Multiplication: (a × b) = (b × a).
- Associative Property – Addition: (a + b) + c = a + (b + c).
- Associative Property – Multiplication: (a x b) x c = a x (b x c).
- Distributive Property: a × (b + c) = (a × b) +( a × c).
Chapter 2: Linear Equations in One Variable
A linear equation in one variable is represented as ax+b = 0, where a and b are integers and x is a variable with one solution. The unknown quantity is usually represented by 'x' in a linear equation. There are various basic approaches to solving a linear equation, such as isolating variables and constants on separate sides of the equation.
In addition to addition, subtraction, multiplication, and division, the chapter also covers other techniques for solving algebraic equations. To solve linear equations, one must learn to solve equations with variables on both sides and simplify equations
CBSE Class 8th Maths Notes Chapter 2 Linear Equations in One Variable |
---|
- Introduction to Linear Equations in One Variable
|
- Solution of Linear Equations
|
|
|
|
- Some applications of Linear Equations in One Variable
|
More Resources for Class 8th Maths Chapter 2 Linear Equation in One Variable |
|
Important Points Covered in Class 8th Maths Notes Chapter 2 Linear Equations in One Variable:
- A linear equation is an algebraic equation in which each term is either a constant or the product of a constant and a variable.
- A simple example of a linear equation with only one variable, x, may be written in the form:
ax + b = 0
where a and b are constants and a ≠ 0.
Chapter 3: Understanding Quadrilaterals
A quadrilateral is a closed, 2-D shape with four linear sides, and there are several types based on their edges and vertices, including squares, rectangles, parallelograms, trapeziums, kites, and rhombuses. CBSE Class 8 Maths Notes Chapter 3 covers various characteristics and types of quadrilaterals, including special ones like squares, rectangles, parallelograms, kites, and rhombuses.
The chapter also includes essential theorems such as the Angle sum property and Exterior angle property. Quadrilaterals, like polygons, are classified by their sides and angles, and trapeziums, kites, and parallelograms are among the examples.
CBSE Class 8th Maths Notes Chapter 3 Quadrilateral |
---|
|
|
|
|
|
- Some Special Parallelograms
|
More Resources for Class 8th Maths Chapter 3 Quadrilateral |
|
Major Points and Formulas can be Studied in Class 8th Maths Notes Chapter 3 Understanding Quadrilaterals:
- A simple closed curve made only of line segments is called a Polygon. Polygons are classified based on various factors like the number of their sides or vertices, part of the diagonals in exteriors, and the size and angle between the vertices.
- Some examples of Polygons are Triangle, Quadrilateral, Pentagon, Hexagon, Heptagon, Octagon, Decagon, … , n-gon, Convex Polygons, concave Polygons, regular Polygons, Irregular Polygons, etc.
- Angle Sum Property: This property states that the sum of all angles of a quadrilateral is 360°.
- Sum of the Measures of the Exterior Angles of a Polygon: Regardless of the number of sides in the polygons, the total of the measurements of the exterior angles equals 360 degrees.
- The parallelogram is the four-sided geometrical figure in which the pair of two opposite sides of it are parallel to each other. The main types of parallelograms are, Rhombus, rectangle, square, etc.
Chapter 4: Practical Geometry
This is the chapter where students can gain extra marks if they understand the detailed explanations. Chapter 4 of CBSE Class 8th Maths Notes covers practical geometry which simply means constructing geometrical figures like squares, triangles, quadrilaterals, etc. using a scale, and compass when different parameters of it are known.
The main concept that is learned in this chapter is the Construction of a Quadrilateral under different cases. These cases depend on the given factors of the quadrilateral to determine the unknown one.
CBSE Class 8th Maths Notes Chapter 4 Practical Geometry |
---|
- Introduction to Practical Geometry
- Number of measurements necessary for the construction of a unique Quadrilateral
|
- Construction of a Quadrilateral
- With four sides one diagonal
- With three sides two diagonal
- With two adjacent sides and three angles
- With three sides and two included angles
|
- Construction of Special Quadrilaterals
|
More Resources for Class 8th Maths Chapter 4 Practical Geometry |
|
Major Points Covered in Class 8th Maths Notes Chapter 4 Practical Geometry:
- Geometry is a branch of mathematics that deals with the problems of size, shape, volume, locations, and positions of the figures, and the properties of space. Geometry gives us a practical way of working with Volumes and areas of the figures.
- To construct a quadrilateral uniquely, five measurements are required.
- A quadrilateral can be constructed uniquely if the lengths of its four sides and a diagonal are given.
- A quadrilateral can be constructed uniquely if its two diagonals and three sides are known.
- A quadrilateral can be constructed uniquely if its two adjacent sides and three angles are known.
- A quadrilateral can be constructed uniquely if its three sides and two included angles are given.
Chapter 5: Data Handling
If you want to understand What is Data Handling? and How does it work? and Why it’s needed. then read Chapter 5 of CBSE Class 8 Maths Notes. Data handling refers to the process of collecting, organizing, and presenting any raw information. Data handling is an important maths concept that ensures the integrity of the study data. Whatever subject we choose, we have knowledge in the form of a numerical figure. Every value of this kind is referred to as an observation. Typically, data refers to the collection of all observations. in a way that is helpful to others like in graphs or charts, etc.
The sub-topics covered in this chapter are Organising Data, Grouping Data, Bars with a difference, Circle Graph or Pie Chart, and Chance And Probability. In the Class 8 syllabus, Data Handling also includes some basic concepts of probability like Equally likely Outcomes, Linking chance to Probability, Outcomes as events, and some real-life examples of Chances and Probability.
CBSE Class 8th Maths Notes Chapter 5 Data Handling |
---|
|
- Graphical Representation of Data
- Pictograph
- Bar Graph
- Double Bar Graph
|
|
|
|
More Resources for Class 8th Maths Chapter 5 Data Handling |
|
Important Methods are Used to Organize and Represent Data in Class 8th Maths Chapter 5 Data Handling:
- Graphical representation of data:
- Pictograph: Pictorial representation of data using symbols.
- Bar Graph: A display of information using bars of uniform width, their heights proportional to the respective values.
- Double Bar Graph: A bar graph showing two sets of data simultaneously. It is useful for the comparison of the data.
- Histogram: a graphical representation of frequency distribution in the form of rectangles with class intervals as bases and heights proportional to corresponding frequencies such that there is no gap between any successive rectangles.
- Circle Graph or Pie Chart: A pictorial representation of the numerical data in the form of sectors of a circle such that area of each sector is proportional to the magnitude of the data represented by the sector.
- Probability = Number of outcomes making up an event / Total number of outcomes, if the outcomes are equally likely.
Chapter 6: Squares and Square Roots
CBSE Class 8 Maths Notes, Chapter 6 covers squares and square roots, where squares represent the numbers obtained after multiplying a number by itself, while square roots represent the value obtained after multiplying a number by itself to give the original value. This chapter is divided into two parts: Squares and Square Roots. The first section includes the Properties of Square Numbers, Interesting Patterns, and Finding the square of a number, while the second section explains Finding square roots through different methods like Repeated Subtraction, Prime Factorization, and Division Method.
CBSE Class 8th Maths Notes Chapter 6 Squares and Square Roots |
---|
|
- Properties of Square Numbers
|
- Interesting Patterns
- Triangular Numbers
- Numbers between Square Numbers
- Sum of Odd Numbers
- Sum of Natural Numbers
- Product of Two Consecutive Even or Odd Natural Numbers
|
|
- Square Roots of Numbers
- Square Roots of Perfect Squares
|
- Finding Square Roots
- Square Root by repeated Subtraction
- Square Root by Prime Factorisation
- Square Root by Division Method
|
|
|
More Resources for Class 8th Maths Chapter 6 Squares and Square Roots |
|
Important Points Learned in Class 8th Maths Notes Chapter 6 Squares and Square Roots:
If q is a natural number such that p2= q then,
√q = p and –p
Some of the important properties of Squares and Square roots are listed below:
- There are 2n non-perfect square numbers between n2 and (n+1)2.
- If a perfect square is of n digits then its square root will have n/2 digits if n is even, or (n+1)/2, if n is odd.
Chapter 7: Cubes and Cube Roots
Chapter 7 of CBSE Class 8 Maths Notes again talks about the concepts of cubes and cube roots opposite to each other. As the cubes are used for the numbers that come after multiplying the number by itself thrice. However, the cube root of a number is the value obtained when multiplied by itself thrice to give the original value. For instance, the cube of 5 is 125 and the cube root of 125 is 5.
This chapter thus provides an introduction to Cubes, Some interesting patterns to find cubes, Smallest multiple that is a perfect cube. Also, the introduction to concepts of Cube Roots, the methods to determine the Cube roots through the prime factorization method, and the Cube root of a cube number can be learned in this chapter.
CBSE Class 8th Maths Notes Chapter 7 Cubes and Cube Roots |
---|
|
|
- Some Interesting Patterns
- Adding Consecutive Odd Numbers
- Prime Factors of Cubes
- Smallest Multiple that is a Perfect Cube
|
- Cube Roots
- Cube Roots by Prime Factorisation
- Cube Root of Cube Number
|
More Resources for Class 8th Maths Chapter 7 Cubes and Cube Roots |
|
Important Concepts Learned in Class 8th Maths Notes Chapter 7 Cubes and Cube Roots:
Consider any number m, which can be expressed as the product of any number three times as m = n × n × n = n3. n3 is so known as the cube of n and m is now known as cube root of n:
3√m = n
Method of finding a Cube Root: There are two different ways to determine the cube root of a number, that are:
- Prime Factorization Method
- Estimation Method
Chapter 8: Comparing Quantities
In chapter 8 of CBSE Class 8 Maths Notes, we’ll cover Comparing quantities which is the most basic everyday-life application of Mathematics that deals with quantities. Students can understand how the market works at a young age. This includes the concepts like percentage, ratio, market price, selling price, cost price, discount and discount price, profit or loss, interest, etc.
The sub-topics in this chapter are Ratios and Percentages, Finding the Increase or Decrease Percentage, and Finding Discounts. Also, the Estimation in percentages, Prices Related To Buying And Selling (Profit And Loss), and Finding cost price/selling price, are thoroughly explained in this chapter.
CBSE Class 8th Maths Notes Chapter 8 Comparing Quantities |
---|
|
|
|
- Profit and Loss
- Profit and Loss Percentage
|
|
|
|
- Rate Compounded Annually and Half Yearly
|
- Application of Compound Interest
|
More Resources for Class 8th Maths Chapter 8 Comparing Quantities |
|
Important Formulas Covered in Class 8 Maths Notes Chapter 8 Comparing Quantities:
- Profit = Selling price – Cost price
- Loss = Cost price – Selling price
- If SP > CP, then it is profit.
- If SP = CP, then it is neither profit nor loss.
- If CP > SP, then it is loss.
- Discount = Marked Price - Sale Price
- Discount % = Discount × 100 / MP
- Profit Percentage = (Profit / Cost Price) × 100
- Loss Percentage = (Loss / Cost Price) × 100
- Percentage Increased = Change in Value / Original Value
- Simple Interest = ( Principal × Rate × Time )/100
- Compound Interest Formula = Amount - Principal
- Sales tax or VAT = Tax of Selling price = (Cost Price × Rate of Sales Tax) / 100
- Billing Amount = Selling price + VAT
Chapter 9: Algebraic Expressions and Identities
Chapter 9 - Algebraic Expressions and Identities provides information about the basics of monomials, binomials, and polynomials in an algebraic expression.
Here we'll learn about some basic terminologies like Expressions, Terms, Factors, Coefficients, Monomials, Binomials, and Polynomials. Along with these basics operations like Addition, Subtraction, and Multiplication of Algebraic Expressions are covered in this chapter. Standard Identities, and Applying Identities from this chapter are the most important scoring sections of this chapter.
CBSE Class 8th Maths Notes Chapter 9 Algebraic Expressions and Identities |
---|
|
|
|
|
- Multiplication of Algebraic Expressions
|
|
More Resources for Class 8th Maths Chapter 9 Algebraic Expressions and Identities |
|
Important Algebraic Identities:
- (a + b)2 = a2 + 2ab + b2
- (a – b)2 = a2 – 2ab + b2
- (a + b) (a – b) = a2 – b2
- (x + a) (x + b) = x2 + (a + b)x + ab
- (x + a) (x – b) = x2 + (a – b)x – ab
- (x – a) (x + b) = x2 + (b – a)x – ab
- (x – a) (x – b) = x2 – (a + b)x + ab
- (a + b)3 = a3 + b3 + 3ab(a + b)
- (a – b)3 = a3 – b3 – 3ab(a – b)
Chapter 10: Visualising Solid Shapes
Visualizing Solid Shapes is a concept that provides the understanding of different solids shapes when visualized in different dimensions and various terms used to describe their properties.
This is one of the easiest scoring chapters in Class 8 maths. Thus, this chapter helps to understand the interesting topics related to solid shapes. These topics are Views of 3D-Shapes, explanations of Faces, Edges, and Vertices, and Regular polyhedrons. However, Euler’s formula is the most important topic in this chapter.
CBSE Class 8th Maths Notes Chapter 10 Visualising Solid Shapes |
---|
|
|
|
- Classification of Solids
- Prism
- Pyramids
- Polyhedrons
- Platonic Solids
|
- Types of Polyhedrons
- Regular and Irregular Polyhedrons
- Convex and Concave Polyhedrons
|
More Resources for Class 8th Maths Chapter 10 Visualising Solid Shapes |
|
Important Formula Covered in Class 8th Maths Notes Chapter 10 Visualising Solid Shapes:
A polyhedron has a certain number of planar faces, edges, and vertices that meet the formula:
F + V – E = 2
where F is the number of faces. The letters V and E stand for the number of vertices and edges, respectively.
The above formula is called as Euler's formula.
Chapter 11: Mensuration
Mensuration is the chapter that deals with the measurement or the calculations related to determining the area, perimeter, volume of various geometrical figures like squares, cubes, rectangles, cuboids, cylinders, and triangles, etc.
The chapter consists of the calculation of area and volume for trapezium, quadrilateral, polygons, cube, cuboid, etc., by understanding the formulas. Thus, the major topics explained in this chapter are only related to Surface areas and Volumes. The area of the Trapezium, some general quadrilaterals, polygons, etc are covered in the first section. While the surface areas and volumes of different solid shapes like cubes, cuboids, cones, etc are covered in the next section of the chapter.
CBSE Class 8th Maths Notes Chapter 11 Mensuration |
---|
|
|
|
|
|
|
|
More Resources for Class 8th Maths Notes Chapter 11 Mensuration |
|
Important Formulas Explained in Class 8th Maths Notes Chapter 11 Mensuration:
Chapter 12: Exponents and Powers
The chapter Exponents and Powers cover the primary concepts such as the laws of exponents and their applications. The chapter deals with the problems using the applications of power to write large numbers in exponents and vice-versa.
In this chapter, we will learn to calculate negative exponents and negative power values. The sub-topics in this chapter explained are Powers with Negative Exponents, Laws of Exponents along with the use of Exponents to Express small numbers in Standard Form.
CBSE Class 8th Maths Notes Chapter 12 Exponents and Powers |
---|
|
|
- Laws of Exponents
- Exponents with like Bases
- Power of a Power
- Exponents with Unlike Bases and the Same Exponent
- Distribution of Exponents
|
- Uses of Exponents
- Inter Conversion between Standard and Normal Forms
- Comparison of Quantities Using Exponents
|
More Resources for Class 8th Maths Chapter 12 Exponents and Powers |
|
Important Laws Covered in Class 8 Maths Notes Chapter 12 Exponents and Powers:
- Law of Product: am × an = am + n
- Law of Quotient: am/an = am - n
- Law of Zero Exponent: a0 = 1
- Law of Negative Exponent: a-m = 1/am
- Law of Power of a Power: (am)n = amn
- Law of Power of a Product: (ab)n = ambm
- Law of Power of a Quotient: (a/b)m = am/bm
Chapter 13: Direct and Inverse Proportions
This chapter gives a detailed explanation of inverse and direct proportions through word problems. Any two quantities a and b can be said to be in direct proportion if they variate (increase or decrease) together with each other in such a way that the ratio of their corresponding values remains the same. However, two quantities x and y are said to be in inverse proportion if an increase in x causes a proportional decrease in y (and vice-versa) in such a manner that the product of their corresponding values remains constant.
CBSE Class 8th Maths Notes Chapter 13 Direct and Inverse Proportions |
---|
|
|
More Resources for Class 8th Chapter 13 Direct and Inverse Proportions |
|
Major Points Covered in Class 8 Maths Notes Chapter 13 Direct and Inverse Proportions:
- Proportionality is represented by the symbol ∝. For example, if we claim that p is proportional to q, this implies p ∝ q and if we say that p is inversely proportional to q, then this implies "p∝1/q."
- Direct Proportion: If a/b = k, where k is any positive number, then a and b are said to be in direct proportion. e.g. If the number of things bought increases, then the total cost of purchase also increases.
- Inverse Proportion: If xy = k, then x and y are said to vary inversely. e.g. If the number of people increases, the time is taken to finish the food decreases. Or If the speed will increase the time required to cover a given distance will decrease.
Chapter 14: Factorisation
This chapter comprises the problems on the factors of natural numbers and algebraic expressions, factorization by regrouping terms, factorization using identities, and division of algebraic expressions.
Major topics and subtopics that can be understood in-depth are, Factors and How to do Factorisation? Some common methods for performing factorization are, Factorisation by regrouping terms, Factorisation using identities, and Factors of the form (x+a) (x+b) is also part of this chapter. The most important and scoring topic in this unit is the Division of Algebraic Expressions- monomial by another monomial, polynomial by a monomial. Thus, this will help students to understand all about factorization.
CBSE Class 8th Maths Notes Chapter 14 Factorisation |
---|
- Introduction of Factorisation
- Factors of Natural Numbers
- Factors of Algebraic Expressions
|
- What is the Factorisation?
- Method of Common Factors
- FactorizationFactorization by regrouping
- Factorization using Identities
- Factors of the form (x+a)(x+b)
|
|
More Resources for Class 8th Maths Chapter 14 Factorisation |
|
Important Formulas Explained in Class 8th Maths Notes Chapter 14 Factorisation:
- A number of factorable expressions are of the form or may be factored into the form: a2 + 2ab + b2, a2 – 2ab + b2, a2 – b2 and x2 + (a + b)x + ab. These expressions can be easily factorized using below mentioned identities as,
- a2 + 2ab + b2 = (a + b)2
- a2 - 2ab + b2 = (a - b)2
- a2 – b2 = (a + b) (a - b)
- x2 + (a + b)x + ab = (x + a)(x + b)
- We have divisions of algebraic expressions in the case of divisions of algebraic expressions that we discussed in this chapter.
Dividend = Divisor × Quotient
or
Dividend = Divisor × Quotient + Remainder
Chapter 15: Introduction to Graphs
This chapter is all about the basic understanding of graphs, kinds of graphs, etc. Lately, this chapter provided an emphasis on the construction of different types of graphs and their applications.
Introduction to graphs like - Bar Graphs, Pie graphs, histograms, Line graphs, and Linear Graphs are some essential terms that are majorly covered in this chapter.
CBSE Class 8th Maths Notes Chapter 15 Introduction to Graphs |
---|
|
|
|
More Resources for Class 8th Maths Chapter 15 Introduction to Graphs |
|
Important Terms in Class 8th Maths Notes Chapter 15 Introduction to Graphs:
- Bar Graph: When comparing categories, the bar graph is the most appropriate tool.
- Pie charts: The pie charts are the best way to compare sections of a whole.
- Histogram: A histogram may be used to make data simpler to interpret when it is presented in intervals.
- Line Graph: A line graph will be beneficial in the situation of data that changes constantly over time.
Chapter 16: Playing with Numbers
All the above-mentioned chapters basically helped to learn about various kinds of numbers and their different properties likewise in this chapter the concept of numbers is discussed in a more general way.
Numbers in General Form, Games with Numbers, and Letters for Digits are covered in this chapter. However, Divisibility tests like Divisibility by 10, Divisibility by 5, Divisibility by 7, Divisibility by 9, and 3 are also covered.
CBSE Class 8th Maths Notes Chapter 16 Playing with Numbers |
---|
|
- Playing with Numbers
- Reversing the 2-digit numbers and adding them
- Reversing the 2-digit numbers and Subtracting them
- Reversing the 3-digit numbers and Subtracting them
- Taking all the combinations of 3-digit numbers and adding them
|
|
- Test of Divisibility
- Divisibility by 10
- Divisibility by 5
- Divisibility by 2
- Divisibility by 3
- Divisibility by 9
|
More Resources for Class 8th Maths Chapter 16 Playing with Numbers |
|
List of Important Points Covered in Class 8 Maths Notes Chapter 16 Playing with Numbers:
- Divisibility by 2: A number is divisible by 2 when its one’s digit is 0, 2, 4, 6 or 8.
- Divisibility by 3: A number is divisible by 3 when the sum of its digits is divisible by 3.
- Divisibility by 4: A number is divisible by 4 when the number formed by its last two digits is divisible by 4.
- Divisibility by 5: A number is divisible by 5 when its ones digit is 0 or 5.
- Divisibility by 6: A number is divisible by 6 when it is divisible by both 2 and 3.
- Divisibility by 9: A number is divisible by 9 when the sum of its digits is divisible by 9.
- Divisibility by 10: A number is divisible by 10 when its one digit is 0.
- Divisibility by 11: A number is divisible by 11 when the difference of the sum of its digits in odd places and the sum of its digits in even places is either o or a multiple of 11.
CBSE Class 8 Maths Notes Chapter 16 Covers the following topics:
Important Resources for CBSE Class 8th Maths by GeeksforGeeks:
Similar Reads
Maths Mathematics, often referred to as "math" for short. It is the study of numbers, quantities, shapes, structures, patterns, and relationships. It is a fundamental subject that explores the logical reasoning and systematic approach to solving problems. Mathematics is used extensively in various fields
5 min read
Basic Arithmetic
What are Numbers?Numbers are symbols we use to count, measure, and describe things. They are everywhere in our daily lives and help us understand and organize the world.Numbers are like tools that help us:Count how many things there are (e.g., 1 apple, 3 pencils).Measure things (e.g., 5 meters, 10 kilograms).Show or
15+ min read
Arithmetic OperationsArithmetic Operations are the basic mathematical operationsâAddition, Subtraction, Multiplication, and Divisionâused for calculations. These operations form the foundation of mathematics and are essential in daily life, such as sharing items, calculating bills, solving time and work problems, and in
9 min read
Fractions - Definition, Types and ExamplesFractions are numerical expressions used to represent parts of a whole or ratios between quantities. They consist of a numerator (the top number), indicating how many parts are considered, and a denominator (the bottom number), showing the total number of equal parts the whole is divided into. For E
7 min read
What are Decimals?Decimals are numbers that use a decimal point to separate the whole number part from the fractional part. This system helps represent values between whole numbers, making it easier to express and measure smaller quantities. Each digit after the decimal point represents a specific place value, like t
10 min read
ExponentsExponents are a way to show that a number (base) is multiplied by itself many times. It's written as a small number (called the exponent) to the top right of the base number.Think of exponents as a shortcut for repeated multiplication:23 means 2 x 2 x 2 = 8 52 means 5 x 5 = 25So instead of writing t
9 min read
PercentageIn mathematics, a percentage is a figure or ratio that signifies a fraction out of 100, i.e., A fraction whose denominator is 100 is called a Percent. In all the fractions where the denominator is 100, we can remove the denominator and put the % sign.For example, the fraction 23/100 can be written a
5 min read
Algebra
Variable in MathsA variable is like a placeholder or a box that can hold different values. In math, it's often represented by a letter, like x or y. The value of a variable can change depending on the situation. For example, if you have the equation y = 2x + 3, the value of y depends on the value of x. So, if you ch
5 min read
Polynomials| Degree | Types | Properties and ExamplesPolynomials are mathematical expressions made up of variables (often represented by letters like x, y, etc.), constants (like numbers), and exponents (which are non-negative integers). These expressions are combined using addition, subtraction, and multiplication operations.A polynomial can have one
9 min read
CoefficientA coefficient is a number that multiplies a variable in a mathematical expression. It tells you how much of that variable you have. For example, in the term 5x, the coefficient is 5 â it means 5 times the variable x.Coefficients can be positive, negative, or zero. Algebraic EquationA coefficient is
8 min read
Algebraic IdentitiesAlgebraic Identities are fundamental equations in algebra where the left-hand side of the equation is always equal to the right-hand side, regardless of the values of the variables involved. These identities play a crucial role in simplifying algebraic computations and are essential for solving vari
14 min read
Properties of Algebraic OperationsAlgebraic operations are mathematical processes that involve the manipulation of numbers, variables, and symbols to produce new results or expressions. The basic algebraic operations are:Addition ( + ): The process of combining two or more numbers to get a sum. For example, 3 + 5 = 8.Subtraction (â)
3 min read
Geometry
Lines and AnglesLines and Angles are the basic terms used in geometry. They provide a base for understanding all the concepts of geometry. We define a line as a 1-D figure that can be extended to infinity in opposite directions, whereas an angle is defined as the opening created by joining two or more lines. An ang
9 min read
Geometric Shapes in MathsGeometric shapes are mathematical figures that represent the forms of objects in the real world. These shapes have defined boundaries, angles, and surfaces, and are fundamental to understanding geometry. Geometric shapes can be categorized into two main types based on their dimensions:2D Shapes (Two
2 min read
Area and Perimeter of Shapes | Formula and ExamplesArea and Perimeter are the two fundamental properties related to 2-dimensional shapes. Defining the size of the shape and the length of its boundary. By learning about the areas of 2D shapes, we can easily determine the surface areas of 3D bodies and the perimeter helps us to calculate the length of
10 min read
Surface Areas and VolumesSurface Area and Volume are two fundamental properties of a three-dimensional (3D) shape that help us understand and measure the space they occupy and their outer surfaces.Knowing how to determine surface area and volumes can be incredibly practical and handy in cases where you want to calculate the
10 min read
Points, Lines and PlanesPoints, Lines, and Planes are basic terms used in Geometry that have a specific meaning and are used to define the basis of geometry. We define a point as a location in 3-D or 2-D space that is represented using coordinates. We define a line as a geometrical figure that is extended in both direction
14 min read
Coordinate Axes and Coordinate Planes in 3D spaceIn a plane, we know that we need two mutually perpendicular lines to locate the position of a point. These lines are called coordinate axes of the plane and the plane is usually called the Cartesian plane. But in real life, we do not have such a plane. In real life, we need some extra information su
6 min read
Trigonometry & Vector Algebra
Trigonometric RatiosThere are three sides of a triangle Hypotenuse, Adjacent, and Opposite. The ratios between these sides based on the angle between them is called Trigonometric Ratio. The six trigonometric ratios are: sine (sin), cosine (cos), tangent (tan), cotangent (cot), cosecant (cosec), and secant (sec).As give
4 min read
Trigonometric Equations | Definition, Examples & How to SolveTrigonometric equations are mathematical expressions that involve trigonometric functions (such as sine, cosine, tangent, etc.) and are set equal to a value. The goal is to find the values of the variable (usually an angle) that satisfy the equation.For example, a simple trigonometric equation might
9 min read
Trigonometric IdentitiesTrigonometric identities play an important role in simplifying expressions and solving equations involving trigonometric functions. These identities, which include relationships between angles and sides of triangles, are widely used in fields like geometry, engineering, and physics. Some important t
10 min read
Trigonometric FunctionsTrigonometric Functions, often simply called trig functions, are mathematical functions that relate the angles of a right triangle to the ratios of the lengths of its sides.Trigonometric functions are the basic functions used in trigonometry and they are used for solving various types of problems in
6 min read
Inverse Trigonometric Functions | Definition, Formula, Types and Examples Inverse trigonometric functions are the inverse functions of basic trigonometric functions. In mathematics, inverse trigonometric functions are also known as arcus functions or anti-trigonometric functions. The inverse trigonometric functions are the inverse functions of basic trigonometric function
11 min read
Inverse Trigonometric IdentitiesInverse trigonometric functions are also known as arcus functions or anti-trigonometric functions. These functions are the inverse functions of basic trigonometric functions, i.e., sine, cosine, tangent, cosecant, secant, and cotangent. It is used to find the angles with any trigonometric ratio. Inv
9 min read
Calculus
Introduction to Differential CalculusDifferential calculus is a branch of calculus that deals with the study of rates of change of functions and the behaviour of these functions in response to infinitesimal changes in their independent variables.Some of the prerequisites for Differential Calculus include:Independent and Dependent Varia
6 min read
Limits in CalculusIn mathematics, a limit is a fundamental concept that describes the behaviour of a function or sequence as its input approaches a particular value. Limits are used in calculus to define derivatives, continuity, and integrals, and they are defined as the approaching value of the function with the inp
12 min read
Continuity of FunctionsContinuity of functions is an important unit of Calculus as it forms the base and it helps us further to prove whether a function is differentiable or not. A continuous function is a function which when drawn on a paper does not have a break. The continuity can also be proved using the concept of li
13 min read
DifferentiationDifferentiation in mathematics refers to the process of finding the derivative of a function, which involves determining the rate of change of a function with respect to its variables.In simple terms, it is a way of finding how things change. Imagine you're driving a car and looking at how your spee
2 min read
Differentiability of a Function | Class 12 MathsContinuity or continuous which means, "a function is continuous at its domain if its graph is a curve without breaks or jumps". A function is continuous at a point in its domain if its graph does not have breaks or jumps in the immediate neighborhood of the point. Continuity at a Point: A function f
11 min read
IntegrationIntegration, in simple terms, is a way to add up small pieces to find the total of something, especially when those pieces are changing or not uniform.Imagine you have a car driving along a road, and its speed changes over time. At some moments, it's going faster; at other moments, it's slower. If y
3 min read
Probability and Statistics
Basic Concepts of ProbabilityProbability is defined as the likelihood of the occurrence of any event. It is expressed as a number between 0 and 1, where 0 is the probability of an impossible event and 1 is the probability of a sure event.Concepts of Probability are used in various real life scenarios : Stock Market : Investors
7 min read
Bayes' TheoremBayes' Theorem is a mathematical formula used to determine the conditional probability of an event based on prior knowledge and new evidence. It adjusts probabilities when new information comes in and helps make better decisions in uncertain situations.Bayes' Theorem helps us update probabilities ba
13 min read
Probability Distribution - Function, Formula, TableA probability distribution is a mathematical function or rule that describes how the probabilities of different outcomes are assigned to the possible values of a random variable. It provides a way of modeling the likelihood of each outcome in a random experiment.While a Frequency Distribution shows
13 min read
Descriptive StatisticStatistics is the foundation of data science. Descriptive statistics are simple tools that help us understand and summarize data. They show the basic features of a dataset, like the average, highest and lowest values and how spread out the numbers are. It's the first step in making sense of informat
5 min read
What is Inferential Statistics?Inferential statistics is an important tool that allows us to make predictions and conclusions about a population based on sample data. Unlike descriptive statistics, which only summarize data, inferential statistics let us test hypotheses, make estimates, and measure the uncertainty about our predi
7 min read
Measures of Central Tendency in StatisticsCentral tendencies in statistics are numerical values that represent the middle or typical value of a dataset. Also known as averages, they provide a summary of the entire data, making it easier to understand the overall pattern or behavior. These values are useful because they capture the essence o
11 min read
Set TheorySet theory is a branch of mathematics that deals with collections of objects, called sets. A set is simply a collection of distinct elements, such as numbers, letters, or even everyday objects, that share a common property or rule.Example of SetsSome examples of sets include:A set of fruits: {apple,
3 min read
Practice