CBSE Class 10th Maths Formulas: Chapter Wise Formula and Points
Last Updated :
23 Jul, 2025
Mathematics is one of the most scoring subject in CBSE Class 10th board exam. So Students are advised to prepare well for Math in order to score good marks in CBSE Class 10 board exam.
GeeksforGeeks has curated the chapter wise Math formulae for CBSE Class 10th exam. These Formulae include chapters such as, Number system, Polynomials, Trigonometry, Algebra, Mensuration, Probability, and Statistics.

CBSE Class 10th Maths Formulas
Below is the chapter wise formulae for CBSE Class 10th Exam.
Chapter 1 Real Numbers
The first chapter of mathematics for class 10th will introduce you to a variety of concepts such as natural numbers, whole numbers, and real numbers, and others.
Let's look at some concepts and formulas for Chapter 1 Real numbers for Class 10 as:
Concepts | Description | Examples/Formula |
---|
Natural Numbers | Counting numbers starting from 1. | N = {1, 2, 3, 4, 5, ...} |
Whole Numbers | Counting numbers including zero. | W = {0, 1, 2, 3, 4, 5, ...} |
Integers | All positive numbers, zero, and negative numbers. | …, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, … |
Positive Integers | All positive whole numbers. | Z+ = 1, 2, 3, 4, 5, … |
Negative Integers | All negative whole numbers. | Z– = -1, -2, -3, -4, -5, … |
Rational Number | Numbers expressed as a fraction where both numerator and denominator are integers and the denominator is not zero. | Examples: 3/7, -5/4 |
Irrational Number | Numbers that cannot be expressed as a simple fraction. | Examples: π, √5 |
Real Numbers | All numbers that can be found on the number line, including rational and irrational numbers. | Includes Natural, Whole, Integers, Rational, Irrational |
Euclid’s Division Algorithm | A method for finding the HCF of two numbers. | a = bq + r, where 0 ≤ r < b |
Fundamental Theorem of Arithmetic | States that every composite number can be expressed as a product of prime numbers. | Composite Numbers = Product of Primes |
HCF and LCM by Prime Factorization | Method to find the highest common factor and least common multiple. | HCF = Product of smallest powers of common factors; LCM = Product of greatest powers of each prime factor; HCF(a,b) × LCM(a,b) = a × b |
Learn More
Chapter 2 Polynomials
Polynomial equations are among the most common algebraic equations involving polynomials. Learning algebra formulae in class 10 will assist you in turning diverse word problems into mathematical forms.
These algebraic formulae feature a variety of inputs and outputs that may be interpreted in a variety of ways. Here are all of the key Algebra Formulas and properties for Class 10:
Category | Description | Formula/Identity |
---|
General Polynomial Formula | Standard form of a polynomial | F (x) = anxn + bxn-1 + an-2xn-2 + …….. + rx + s |
Special Case: Natural Number n | Difference of powers formula | an – bn = (a – b)(an-1 + an-2b +…+ bn-2a + bn-1) |
Special Case: Even n (n = 2a) | Sum of even powers formula | xn + yn = (x + y)(xn-1 – xn-2y +…+ yn-2x – yn-1) |
Special Case: Odd Number n | Sum of odd powers formula | xn + yn = (x + y)(xn-1 – xn-2y +…- yn-2x + yn-1) |
Division Algorithm for Polynomials | Division of one polynomial by another | p(x) = q(x) × g(x) + r(x), where r(x) = 0 or degree of r(x) < degree of g(x). Here p(x) is divided, g(x) is divisor, q(x) is quotient, g(x) ≠ 0 and r(x) is remainder. |
Types of Polynomials: Here are some important concepts and properties are mentioned in the below table for each type of polynomials.
Types of Polynomials | General Form | Zeroes | Formation of Polynomial | Relationship Between Zeroes and Coefficients |
---|
Linear | ax+b | 1 | f(x)=a (x−α) | α=−b/a |
Quadratic | ax2+bx+c | 2 | f(x)=a (x−α)(x−β) | Sum of zeroes α+β=−b/a ; Product of zeroes, αβ= c/a |
Cubic | ax3+bx2+cx+d | 3 | f(x)=a (x−α)(x−β)(x−γ) | Sum of zeroes, α+β+γ=−b/a; Sum of product of zeroes taken two at a time, αβ+βγ+γα = c/a; Product of zeroes, αβγ= −ad |
Quartic | ax4+bx3+cx2+dx+e | 4 | f(x)=a(x−α)(x−β)(x−γ)(x−δ) | Relationships become more complex; involves sums and products of zeroes in various combinations. |
Algebraic Polynomial Identities
- (a+b)2 = a2 + b2 + 2ab
- (a-b)2 = a2 + b2 – 2ab
- (a+b) (a-b) = a2 – b2
- (x + a)(x + b) = x2 + (a + b)x + ab
- (x + a)(x – b) = x2 + (a – b)x – ab
- (x – a)(x + b) = x2 + (b – a)x – ab
- (x – a)(x – b) = x2 – (a + b)x + ab
- (a + b)3 = a3 + b3 + 3ab(a + b)
- (a – b)3 = a3 – b3 – 3ab(a – b)
- (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2xz
- (x + y – z)2 = x2 + y2 + z2 + 2xy – 2yz – 2xz
- (x – y + z)2 = x2 + y2 + z2 – 2xy – 2yz + 2xz
- (x – y – z)2 = x2 + y2 + z2 – 2xy + 2yz – 2xz
- x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz -xz)
- x2 + y2 =½ [(x + y)2 + (x – y)2]
- (x + a) (x + b) (x + c) = x3 + (a + b +c)x2 + (ab + bc + ca)x + abc
- x3 + y3= (x + y) (x2 – xy + y2)
- x3 – y3 = (x – y) (x2 + xy + y2)
- x2 + y2 + z2 -xy – yz – zx = ½ [(x-y)2 + (y-z)2 + (z-x)2]
Learn More
Chapter 3 Pair of Linear Equations in Two Variables
Pair of Linear Equations in Two Variables is a crucial chapter that contains a range of significant Maths formulas for class 10, particularly for competitive examinations. Some of the important concepts from this chapter are included below:
- Linear Equations: An equation which can be put in the form ax + by + c = 0, where a, b and c are Pair of Linear Equations in Two Variables, and a and b are not both zero, is called a linear equation in two variables x and y.
- Solution of a system of linear equations: The solution of the above system is the value of x and y that satisfies each of the equations in the provided pair of linear equations.
- Consistent system of linear equations: If a system of linear equations has at least one solution, it is considered to be consistent.
- Inconsistent system of linear equation: If a system of linear equations has no solution, it is said to be inconsistent.
S. No.
| Types of Linear Equation
| General form
| Description
| Solutions
|
1. | Linear Equation in one Variable | ax + b=0 | Where a ≠ 0 and a & b are real numbers | One Solution |
2. | Linear Equation in Two Variables | ax + by + c = 0 | Where a ≠ 0 & b ≠ 0 and a, b & c are real numbers | Infinite Solutions possible |
3. | Linear Equation in Three Variables | ax + by + cz + d = 0 | Where a ≠ 0, b ≠ 0, c ≠ 0 and a, b, c, d are real numbers | Infinite Solutions possible |
- Simultaneous Pair of Linear Equations: The pair of equations of the form:
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0
- Graphically represented by two straight lines on the cartesian plane as discussed below:

Read More
Chapter 4 Quadratic Equations
Concept | Description |
---|
Quadratic Equation | A polynomial equation of degree two in one variable, typically written as f(x) = ax² + bx + c, where 'a,' 'b,' and 'c' are real numbers, and 'a' is not equal to zero. |
Roots of Quadratic Equation | The values of 'x' that satisfy the quadratic equation f(x) = 0 are the roots (α, β) of the equation. Quadratic equations always have two roots. |
Quadratic Formula | The formula to find the roots (α, β) of a quadratic equation is given by: (α, β) = [-b ± √(b² - 4ac)] / (2a), where 'a,' 'b,' and 'c' are coefficients of the equation. |
Discriminant | The discriminant 'D' of a quadratic equation is given by D = b² - 4ac. It determines the nature of the roots of the equation. |
Nature of Roots | Depending on the value of the discriminant 'D,' the nature of the roots can be categorized as follows: |
- D > 0: Real and distinct roots (unequal). |
- D = 0: Real and equal roots (coincident). |
- D < 0: Imaginary roots (unequal, in the form of complex numbers). |
Sum and Product of Roots | The sum of the roots (α + β) is equal to -b/a, and the product of the roots (αβ) is equal to c/a. |
Quadratic Equation in Root Form | A quadratic equation can be expressed in the form of its roots as x² - (α + β)x + (αβ) = 0. |
Common Roots of Quadratic Equations | Two quadratic equations have one common root if (b₁c₂ - b₂c₁) / (c₁a₂ - c₂a₁) = (c₁a₂ - c₂a₁) / (a₁b₂ - a₂b₁). |
Both equations have both roots in common if a₁/a₂ = b₁/b₂ = c₁/c₂. |
Maximum and Minimum Values | For a quadratic equation ax² + bx + c = 0: |
Roots of Cubic Equation | - If 'a' is greater than zero (a > 0), it has a minimum value at x = -b/(2a). |
- If 'a' is less than zero (a < 0), it has a maximum value at x = -b/(2a). |
If α, β, γ are roots of the cubic equation ax³ + bx² + cx + d = 0, then: |
- α + β + γ = -b/a |
- αβ + βγ + λα = c/a |
- αβγ = -d/a |
Learn More
Chapter 5 Arithmetic Progressions
Many things in our everyday lives have a pattern to them. Sequences are the name given to these patterns.
Arithmetic and geometric sequences are two examples of such sequences. The terms of a sequence are the various numbers that appear in it.
Concept | Description |
---|
Arithmetic Progressions (AP) | A sequence of terms where the difference between consecutive terms is constant. |
Common Difference | The constant difference between any two consecutive terms in an AP. It is denoted as 'd'. d=a2- a1 = a3 - a2 = ... |
nth Term of AP | an = a + (n - 1) d,, where 'a' is the first term, 'n' is the term number, and 'd' is the common difference. |
Sum of nth Terms of AP | Sn= n/2 [2a + (n - 1)d], where 'a' is the first term, 'n' is the number of terms, and 'd' is the common difference. |
Learn More
Chapter 6 Triangles
Triangle is a three-side closed figure made up of three straight lines close together. In CBSE Class 10 curriculum, chapter 6 majorly discusses the similarity criteria between two triangles and some important theorems which may help to understand the problems of triangles.
The main points of the chapter triangle's summary are listed as:
Chapter 6: Triangles
|
---|
Concept | Description |
---|
Similar Triangles | Triangles with equal corresponding angles and proportional corresponding sides. |
Equiangular Triangles | Triangles with all corresponding angles equal. The ratio of any two corresponding sides is constant. |
Criteria for Triangle Similarity |
Angle-Angle-Angle (AAA) Similarity | Two triangles are similar if their corresponding angles are equal. |
Side-Angle-Side (SAS) Similarity | Two triangles are similar if two sides are in proportion and the included angles are equal. |
Side-Side-Side (SSS) Similarity | Two triangles are similar if all three corresponding sides are in proportion. |
Basic Proportionality Theorem | If a line is drawn parallel to one side of a triangle intersecting the other two sides, it divides those sides proportionally. |
Converse of Basic Proportionality Theorem | If in two triangles, corresponding angles are equal, then their corresponding sides are proportional and the triangles are similar. |
Learn More
Chapter 7 Coordinate Geometry
Coordinate geometry helps in the presentation of geometric forms on a two-dimensional plane and the learning of its properties. To gain an initial understanding of Coordinate geometry, we will learn about the coordinate plane and the coordinates of a point, as discussed in the below-mentioned points:
Formulas Related to Coordinate Geometry
|
---|
| Description | Formula |
---|
Distance Formula | Distance between two points A(x1, y1) and B(x2, y2) | AB= √[(x2 − x1)2 + (y2 − y1)2] |
Section Formula | Coordinates of a point P dividing line AB in ratio m : n | P={[(mx2 + nx1) / (m + n)] , [(my2 + ny1) / (m + n)]} |
Midpoint Formula | Coordinates of the midpoint of line AB | P = {(x1 + x2)/ 2, (y1+y2) / 2} |
Area of a Triangle | Area of triangle formed by points A(x1, y1), B(x2, y2) and C(x3, y3) | (∆ABC = ½ |x1(y2 − y3) + x2(y3 – y1) + x3(y1 – y2)| |
Learn More :
Chapter 8 Introduction to Trigonometry
Trigonometry is the science of relationships between the sides and angles of a right-angled triangle. Trigonometric ratios are ratios of sides of the right triangle. Here are some important trigonometric formulas related to trigonometric ratios:
Category | Formula/Identity | Description/Equivalent |
---|
Arc Length in a Circle | l =r × θ | l is arc length, r is radius, θ is angle in radians |
---|
Radian and Degree Conversion | Radian Measure = π/180 × Degree Measure | Conversion from degrees to radians |
---|
| Degree Measure= 180/π × Radian Measure | Conversion from radians to degrees |
---|
Trigonometric Ratios
Trigonometric Ratio | Formula | Description |
---|
sin θ | P / H | Perpendicular (P) / Hypotenuse (H) |
cos θ | B / H | Base (B) / Hypotenuse (H) |
tan θ | P / B | Perpendicular (P) / Base (B) |
cosec θ | H / P | Hypotenuse (H) / Perpendicular (P) |
sec θ | H / B | Hypotenuse (H) / Base (B) |
cot θ | B / P | Base (B) / Perpendicular (P) |
Read More
Reciprocal of Trigonometric Ratios
Reciprocal Ratio | Formula | Equivalent to |
---|
sin θ | 1 / (cosec θ) | Reciprocal of cosecant |
cosec θ | 1 / (sin θ) | Reciprocal of sine |
cos θ | 1 / (sec θ) | Reciprocal of secant |
sec θ | 1 / (cos θ) | Reciprocal of cosine |
tan θ | 1 / (cot θ) | Reciprocal of cotangent |
cot θ | 1 / (tan θ) | Reciprocal of tangent |
Read More
Trigonometric Identities
Identity | Formula |
---|
Pythagorean Identity | sin2 θ + cos2 θ = 1 ⇒ sin2 θ = 1 - cos2 θ ⇒ cos2 θ = 1 - sin2 θ |
Cosecant-Cotangent Identity | cosec2 θ - cot2 θ = 1 ⇒ sin2 θ = 1 - cos2 θ ⇒ cos2 θ = 1 - sin2 θ |
Secant-Tangent Identity | sec2 θ - tan2 θ = 1 ⇒ sec2 θ = 1 + tan2 θ ⇒ tan2 θ = sec2 θ - 1 |
Read More
Chapter 9 Some Applications of Trigonometry
Trigonometry can be used in many ways in the things around us like we can use it for calculating the height and distance of some objects without calculating them actually. Below mentioned is the chapter summary of Some Applications of Trigonometry as:
Important Concepts in Chapter 9 Trigonometry
|
---|
Line of Sight | The line formed by our vision as it passes through an item when we look at it. |
Horizontal Line | A line representing the distance between the observer and the object, parallel to the horizon. |
Angle of Elevation | The angle formed above the horizontal line by the line of sight when an observer looks up at an object. |
Angle of Depression | The angle formed below the horizontal line by the line of sight when an observer looks down at an object. |
Learn More
Chapter 10 Circles
A circle is a collection of all points in a plane that are at a constant distance from a fixed point. The fixed point is called the centre of the circle and the constant distance from the centre is called the radius.
Let's learn some important concepts discussed in Chapter 10 Circles of your NCERT textbook.
Concept | Description |
---|
Circle | A circle is a closed figure consisting of all points in a plane that are equidistant from a fixed point called the center. |
Radius | The radius of a circle is the distance from the center to any point on the circle's circumference. |
Diameter | The diameter of a circle is a line segment that passes through the center and has endpoints on the circle's circumference. It is twice the length of the radius. |
Chord | A chord is a line segment with both endpoints on the circle's circumference. A diameter is a special type of chord that passes through the center. |
Arc | An arc is a part of the circumference of a circle, typically measured in degrees. A semicircle is an arc that measures 180 degrees. |
Sector | A sector is a region enclosed by two radii of a circle and an arc between them. Sectors can be measured in degrees or radians. |
Segment | A segment is a region enclosed by a chord and the arc subtended by the chord. |
Circumference | The circumference of a circle is the total length around its boundary. It is calculated using the formula: Circumference = 2πr, where 'r' is the radius. |
Area of a Circle | The area of a circle is the total space enclosed by its boundary. It is calculated using the formula: Area = πr², where 'r' is the radius. |
Central Angle | A central angle is an angle whose vertex is at the center of the circle, and its sides pass through two points on the circle's circumference. |
Inscribed Angle | An inscribed angle is an angle formed by two chords in a circle with its vertex on the circle's circumference. |
Tangent Line | A tangent line to a circle is a straight line that touches the circle at only one point, known as the point of tangency. |
Secant Line | A secant line is a straight line that intersects a circle at two distinct points. |
Concentric Circles | Concentric circles are circles that share the same center but have different radii. |
Circumcircle and Incircle | The circumcircle is a circle that passes through all the vertices of a polygon, while the incircle is a circle that is inscribed inside the polygon. |
Chapter 11 Constructions
Construction helps to understand the approach to construct different types of triangles for different given conditions using a ruler and compass of required measurements.
Here the list of important constructions learned in this chapter of class 10 are :
- Determination of a Point Dividing a given Line Segment, Internally in the given Ratio M : N
- Construction of a Tangent at a Point on a Circle to the Circle when its Centre is Known
- Construction of a Tangent at a Point on a Circle to the Circle when its Centre is not Known
- Construction of a Tangents from an External Point to a Circle when its Centre is Known
- Construction of a Tangents from an External Point to a Circle when its Centre is not Known
- Construction of a Triangle Similar to a given Triangle as per given Scale Factor m/n, m<n.
- Construction of a Triangle Similar to a given Triangle as per given Scale Factor m/n, m > n.
Read More
Chapter 12 Areas Related to Circles
The fundamentals of area, circumference, segment, sector, angle and length of a circle, and area for a circle's sector are all covered here. This section also covers the visualization of several planes and solid figure areas.
Below mentioned are the major points from the chapter summary of Areas Related to Circles.
Formulas of Areas Related to Circles
|
---|
Concept | Description | Formula |
---|
Area of a Circle | The space enclosed by the circle's circumference | Area=πr2 |
Circumference of a Circle | The perimeter or boundary line of a circle | Circumference=2πr or πd |
Area of a Sector | The area of a ‘pie-slice’ part of a circle | Area of Sector= (θ/360) × πr2 (θ in degrees) |
Length of an Arc | The length of the curved line forming the sector | Length of Arc= (θ/360) × 2πr (θ in degrees) |
Area of a Segment | Area of a sector minus the area of the triangle formed by the sector | Area of Segment = Area of Sector - Area of Triangle |
- r is the radius of the circle.
- d is the diameter of the circle.
- θ is the angle of the sector or segment in degrees.
Read More
Chapter 13 Surface Areas and Volumes
This page explains the concepts of surface area and volume for Class 10. The surface area and volume of several solid shapes such as the cube, cuboid, cone, cylinder, and so on will be discussed in this article. Lateral Surface Area (LSA), Total Surface Area (TSA), and Curved Surface Area are the three types of surface area (CSA).
Formulas Related to Surface Areas and Volumes
|
---|
Geometrical Figure | Total Surface Area (TSA) | Lateral/Curved Surface Area (CSA/LSA) | Volume |
---|
Cuboid | 2(lb + bh + hl) | 2h(l + b) | l × b × h |
Cube | 6a² | 4a² | a³ |
Right Circular Cylinder | 2πr(h + r) | 2πrh | πr²h |
Right Circular Cone | πr(l + r) | πrl | 1/3πr²h |
Sphere | 4πr² | 2πr² | 4/3πr³ |
Right Pyramid | LSA + Area of the base | ½ × p × l | 1/3 × Area of the base × h |
Prism | LSA × 2B | p × h | B × h |
Hemisphere | 3πr² | 2πr² | 2/3πr³ |
- l = length, b = breadth, h = height, r = radius, a = side, p = perimeter of the base, B = area of the base.
- TSA includes all surfaces of the figure, CSA/LSA includes only the curved or lateral surfaces, and
- Volume measures the space occupied by the figure.
Learn More
Chapter 14 Statistics
Statistics in Class 10 mainly consist of the study of given data b evaluating its mean, mode, median. The statistic formulas are given below:
Statistical Measure | Method/Description | Formula |
---|
Mean | Direct method | X = ∑fi xi / ∑fi |
| Assumed Mean Method | X = a + ∑fi di / ∑fi ,(where di = xi - a) |
| Step Deviation Method: | X = a + ∑fi ui / ∑fi × h |
Median | Middlemost Term | For even number of observations: Middle term For odd number of observations: (n+1/2) th term |
Mode | Frequency Distribution | \text{Mode} = 1 + \left[\dfrac{f_1-f_0}{2f_1-f_0-f_2}\right]\times h
where l = lower limit of the modal class,
f1 =frequency of the modal class,
f0 = frequency of the preceding class of the modal class,
f2 = frequency of the succeeding class of the modal class,
h is the size of the class interval.
|
Chapter 15 Probability
Probability denotes the likelihood of something happening. Its value is expressed from 0 to 1.
Let's discuss some important Probability formulas in the Class 10 curriculum:
Type of Probability | Description | Formula |
---|
Empirical Probability | Probability based on actual experiments or observations. | Empirical Probability = Number of Trials with expected outcome / Total Number of Trials |
Theoretical Probability | Probability based on theoretical reasoning rather than actual experiments. | Theoretical Probability = Number of favorable outcomes to E / Total Number of possible outcomes |
Related :
Similar Reads
Maths Mathematics, often referred to as "math" for short. It is the study of numbers, quantities, shapes, structures, patterns, and relationships. It is a fundamental subject that explores the logical reasoning and systematic approach to solving problems. Mathematics is used extensively in various fields
5 min read
Basic Arithmetic
What are Numbers?Numbers are symbols we use to count, measure, and describe things. They are everywhere in our daily lives and help us understand and organize the world.Numbers are like tools that help us:Count how many things there are (e.g., 1 apple, 3 pencils).Measure things (e.g., 5 meters, 10 kilograms).Show or
15+ min read
Arithmetic OperationsArithmetic Operations are the basic mathematical operationsâAddition, Subtraction, Multiplication, and Divisionâused for calculations. These operations form the foundation of mathematics and are essential in daily life, such as sharing items, calculating bills, solving time and work problems, and in
9 min read
Fractions - Definition, Types and ExamplesFractions are numerical expressions used to represent parts of a whole or ratios between quantities. They consist of a numerator (the top number), indicating how many parts are considered, and a denominator (the bottom number), showing the total number of equal parts the whole is divided into. For E
7 min read
What are Decimals?Decimals are numbers that use a decimal point to separate the whole number part from the fractional part. This system helps represent values between whole numbers, making it easier to express and measure smaller quantities. Each digit after the decimal point represents a specific place value, like t
10 min read
ExponentsExponents are a way to show that a number (base) is multiplied by itself many times. It's written as a small number (called the exponent) to the top right of the base number.Think of exponents as a shortcut for repeated multiplication:23 means 2 x 2 x 2 = 8 52 means 5 x 5 = 25So instead of writing t
9 min read
PercentageIn mathematics, a percentage is a figure or ratio that signifies a fraction out of 100, i.e., A fraction whose denominator is 100 is called a Percent. In all the fractions where the denominator is 100, we can remove the denominator and put the % sign.For example, the fraction 23/100 can be written a
5 min read
Algebra
Variable in MathsA variable is like a placeholder or a box that can hold different values. In math, it's often represented by a letter, like x or y. The value of a variable can change depending on the situation. For example, if you have the equation y = 2x + 3, the value of y depends on the value of x. So, if you ch
5 min read
Polynomials| Degree | Types | Properties and ExamplesPolynomials are mathematical expressions made up of variables (often represented by letters like x, y, etc.), constants (like numbers), and exponents (which are non-negative integers). These expressions are combined using addition, subtraction, and multiplication operations.A polynomial can have one
9 min read
CoefficientA coefficient is a number that multiplies a variable in a mathematical expression. It tells you how much of that variable you have. For example, in the term 5x, the coefficient is 5 â it means 5 times the variable x.Coefficients can be positive, negative, or zero. Algebraic EquationA coefficient is
8 min read
Algebraic IdentitiesAlgebraic Identities are fundamental equations in algebra where the left-hand side of the equation is always equal to the right-hand side, regardless of the values of the variables involved. These identities play a crucial role in simplifying algebraic computations and are essential for solving vari
14 min read
Properties of Algebraic OperationsAlgebraic operations are mathematical processes that involve the manipulation of numbers, variables, and symbols to produce new results or expressions. The basic algebraic operations are:Addition ( + ): The process of combining two or more numbers to get a sum. For example, 3 + 5 = 8.Subtraction (â)
3 min read
Geometry
Lines and AnglesLines and Angles are the basic terms used in geometry. They provide a base for understanding all the concepts of geometry. We define a line as a 1-D figure that can be extended to infinity in opposite directions, whereas an angle is defined as the opening created by joining two or more lines. An ang
9 min read
Geometric Shapes in MathsGeometric shapes are mathematical figures that represent the forms of objects in the real world. These shapes have defined boundaries, angles, and surfaces, and are fundamental to understanding geometry. Geometric shapes can be categorized into two main types based on their dimensions:2D Shapes (Two
2 min read
Area and Perimeter of Shapes | Formula and ExamplesArea and Perimeter are the two fundamental properties related to 2-dimensional shapes. Defining the size of the shape and the length of its boundary. By learning about the areas of 2D shapes, we can easily determine the surface areas of 3D bodies and the perimeter helps us to calculate the length of
10 min read
Surface Areas and VolumesSurface Area and Volume are two fundamental properties of a three-dimensional (3D) shape that help us understand and measure the space they occupy and their outer surfaces.Knowing how to determine surface area and volumes can be incredibly practical and handy in cases where you want to calculate the
10 min read
Points, Lines and PlanesPoints, Lines, and Planes are basic terms used in Geometry that have a specific meaning and are used to define the basis of geometry. We define a point as a location in 3-D or 2-D space that is represented using coordinates. We define a line as a geometrical figure that is extended in both direction
14 min read
Coordinate Axes and Coordinate Planes in 3D spaceIn a plane, we know that we need two mutually perpendicular lines to locate the position of a point. These lines are called coordinate axes of the plane and the plane is usually called the Cartesian plane. But in real life, we do not have such a plane. In real life, we need some extra information su
6 min read
Trigonometry & Vector Algebra
Trigonometric RatiosThere are three sides of a triangle Hypotenuse, Adjacent, and Opposite. The ratios between these sides based on the angle between them is called Trigonometric Ratio. The six trigonometric ratios are: sine (sin), cosine (cos), tangent (tan), cotangent (cot), cosecant (cosec), and secant (sec).As give
4 min read
Trigonometric Equations | Definition, Examples & How to SolveTrigonometric equations are mathematical expressions that involve trigonometric functions (such as sine, cosine, tangent, etc.) and are set equal to a value. The goal is to find the values of the variable (usually an angle) that satisfy the equation.For example, a simple trigonometric equation might
9 min read
Trigonometric IdentitiesTrigonometric identities play an important role in simplifying expressions and solving equations involving trigonometric functions. These identities, which include relationships between angles and sides of triangles, are widely used in fields like geometry, engineering, and physics. Some important t
10 min read
Trigonometric FunctionsTrigonometric Functions, often simply called trig functions, are mathematical functions that relate the angles of a right triangle to the ratios of the lengths of its sides.Trigonometric functions are the basic functions used in trigonometry and they are used for solving various types of problems in
6 min read
Inverse Trigonometric Functions | Definition, Formula, Types and Examples Inverse trigonometric functions are the inverse functions of basic trigonometric functions. In mathematics, inverse trigonometric functions are also known as arcus functions or anti-trigonometric functions. The inverse trigonometric functions are the inverse functions of basic trigonometric function
11 min read
Inverse Trigonometric IdentitiesInverse trigonometric functions are also known as arcus functions or anti-trigonometric functions. These functions are the inverse functions of basic trigonometric functions, i.e., sine, cosine, tangent, cosecant, secant, and cotangent. It is used to find the angles with any trigonometric ratio. Inv
9 min read
Calculus
Introduction to Differential CalculusDifferential calculus is a branch of calculus that deals with the study of rates of change of functions and the behaviour of these functions in response to infinitesimal changes in their independent variables.Some of the prerequisites for Differential Calculus include:Independent and Dependent Varia
6 min read
Limits in CalculusIn mathematics, a limit is a fundamental concept that describes the behaviour of a function or sequence as its input approaches a particular value. Limits are used in calculus to define derivatives, continuity, and integrals, and they are defined as the approaching value of the function with the inp
12 min read
Continuity of FunctionsContinuity of functions is an important unit of Calculus as it forms the base and it helps us further to prove whether a function is differentiable or not. A continuous function is a function which when drawn on a paper does not have a break. The continuity can also be proved using the concept of li
13 min read
DifferentiationDifferentiation in mathematics refers to the process of finding the derivative of a function, which involves determining the rate of change of a function with respect to its variables.In simple terms, it is a way of finding how things change. Imagine you're driving a car and looking at how your spee
2 min read
Differentiability of a Function | Class 12 MathsContinuity or continuous which means, "a function is continuous at its domain if its graph is a curve without breaks or jumps". A function is continuous at a point in its domain if its graph does not have breaks or jumps in the immediate neighborhood of the point. Continuity at a Point: A function f
11 min read
IntegrationIntegration, in simple terms, is a way to add up small pieces to find the total of something, especially when those pieces are changing or not uniform.Imagine you have a car driving along a road, and its speed changes over time. At some moments, it's going faster; at other moments, it's slower. If y
3 min read
Probability and Statistics
Basic Concepts of ProbabilityProbability is defined as the likelihood of the occurrence of any event. It is expressed as a number between 0 and 1, where 0 is the probability of an impossible event and 1 is the probability of a sure event.Concepts of Probability are used in various real life scenarios : Stock Market : Investors
7 min read
Bayes' TheoremBayes' Theorem is a mathematical formula used to determine the conditional probability of an event based on prior knowledge and new evidence. It adjusts probabilities when new information comes in and helps make better decisions in uncertain situations.Bayes' Theorem helps us update probabilities ba
13 min read
Probability Distribution - Function, Formula, TableA probability distribution is a mathematical function or rule that describes how the probabilities of different outcomes are assigned to the possible values of a random variable. It provides a way of modeling the likelihood of each outcome in a random experiment.While a Frequency Distribution shows
13 min read
Descriptive StatisticStatistics is the foundation of data science. Descriptive statistics are simple tools that help us understand and summarize data. They show the basic features of a dataset, like the average, highest and lowest values and how spread out the numbers are. It's the first step in making sense of informat
5 min read
What is Inferential Statistics?Inferential statistics is an important tool that allows us to make predictions and conclusions about a population based on sample data. Unlike descriptive statistics, which only summarize data, inferential statistics let us test hypotheses, make estimates, and measure the uncertainty about our predi
7 min read
Measures of Central Tendency in StatisticsCentral tendencies in statistics are numerical values that represent the middle or typical value of a dataset. Also known as averages, they provide a summary of the entire data, making it easier to understand the overall pattern or behavior. These values are useful because they capture the essence o
11 min read
Set TheorySet theory is a branch of mathematics that deals with collections of objects, called sets. A set is simply a collection of distinct elements, such as numbers, letters, or even everyday objects, that share a common property or rule.Example of SetsSome examples of sets include:A set of fruits: {apple,
3 min read
Practice