Open In App

Make given Array as Mountain array by removing minimum number of elements

Last Updated : 28 Feb, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[] of length N, the task is to remove the minimum number of elements from the array to make it a mountain array and then print it.

Note: A mountain array is an array where there is an index i such that arr[0] < arr[1] < . . .< arr[i-1] < arr[i] > arr[i+1] > . . . > arr[N-1]. Also a mountain array must have a length greater than or equal to 3 to satisfy the above condition.

Examples:

Input: arr[] = {9, 8, 1, 7, 6, 5, 4, 3, 2, 1}
Output: 1 7 6 5 4 3 2 1
Explanation: Remove the elements 9, 8. The resultant array is the mountain array. 
It is the minimum number of removals possible.

Input: arr[] = {1, 1, 1};
Output: -1
Explanation: This array cannot be transformed into a mountain array

 

Approach: Follow the steps below to solve this problem:

  • Create two arrays left and right.
  • For every index i, left[i] will store the longest increasing subsequence that ends at i and right[i] will store the longest decreasing subsequence that starts from i.
  • Now, find the maximum length of mountain subsequence assuming each index as the peak of the mountain.

Length of mountain subsequence having peak at i = left[i]+right[i]-1

  • Find the maximum length of mountain subsequence, say max and keep track of the peak for which the maximum length is achieved.
  • So, the minimum number of deletions is (N - max).
  • Now print the longest increasing subsequence from starting to i and the longest decreasing subsequence from i to end of the array.

Below is the implementation of the above approach:

C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;

// Function to print the mountain array
// after minimum removals
void mountArray(vector<int>& arr)
{
  int N = arr.size();
  vector<int> left(N, 1), right(N, 1);

  for (int i = 0; i < N; ++i) {
    for (int j = 0; j <= i; ++j) {
      if (arr[j] < arr[i]) {

        // This means the
        // previous number is
        // smaller than the number
        left[i] = max(left[j] + 1, left[i]);
      }
    }
  }

  // Find the longest decreasing sequence
  for (int i = N - 1; i >= 0; --i) {
    for (int j = i; j <= N - 1; ++j) {
      if (arr[j] < arr[i]) {
        right[i] = max(right[j] + 1, right[i]);
      }
    }
  }
  int max = 0;
  int index = 0;
  for (int i = 1; i < N - 1; ++i) {
    if (left[i] != 1 && right[i] != 1) {

      if (max < (left[i] + right[i]) - 1) {
        index = i;
        max = (left[i] + right[i]) - 1;
      }
    }
  }

  // Print the longest continuous
  // subsequence from 0 to ith
  // and ith to N index
  vector<int> left1;

  left1.push_back(arr[index]);
  for (int i = index; i >= 0; --i) {
    if (arr[i] < arr[index]) {

      // There is possibility
      // either the index is
      // used or not
      if (left[i] + 1 == left[index]) {
        left1.push_back(arr[i]);
        left[index] -= 1;
      }
    }
  }

  vector<int> right1;

  // Starting the right
  for (int i = index; i < right.size(); ++i) {
    if (arr[index] > arr[i]) {

      if (right[i] + 1 == right[index]) {
        right1.push_back(arr[i]);
        right[index] -= 1;
      }
    }
  }
  if (max < 3) {
    cout << (-1) << "\n";
  }
  else {

    // Print the first left1 array
    // then the right array
    for (int i = left1.size() - 1; i >= 0; --i) {
      cout << left1[i] << " ";
    }
    for (int i = 0; i < right1.size(); ++i) {
      cout << right1[i] << " ";
    }
  }
}

// Driver code
int main()
{
  vector<int> arr = { 9, 8, 1, 7, 6, 5, 4, 3, 2, 1 };
  mountArray(arr);
}

// This code is contributed by Taranpreet
Java
// Java program for the above approach
import java.io.*;
import java.util.*;

class GFG {

    // Function to print the mountain array
    // after minimum removals
    public static void mountArray(int arr[])
    {
        int N = arr.length;
        int left[] = new int[N];
        int right[] = new int[N];
        Arrays.fill(left, 1);
        Arrays.fill(right, 1);

        for (int i = 0; i < N; ++i) {
            for (int j = 0; j <= i; ++j) {
                if (arr[j] < arr[i]) {

                    // This means the
                    // previous number is
                    // smaller than the number
                    left[i] = Math.max(left[j]
                                           + 1,
                                       left[i]);
                }
            }
        }

        // Find the longest decreasing sequence
        for (int i = N - 1; i >= 0; --i) {
            for (int j = i; j <= N - 1; ++j) {
                if (arr[j] < arr[i]) {
                    right[i]
                        = Math.max(right[j]
                                       + 1,
                                   right[i]);
                }
            }
        }
        int max = 0;
        int index = 0;
        for (int i = 1; i < N - 1; ++i) {
            if (left[i] != 1
                && right[i] != 1) {

                if (max < (left[i]
                           + right[i])
                              - 1) {
                    index = i;
                    max = (left[i]
                           + right[i])
                          - 1;
                }
            }
        }

        // Print the longest continuous
        // subsequence from 0 to ith
        // and ith to N index
        ArrayList<Integer> left1
            = new ArrayList<Integer>();

        left1.add(arr[index]);
        for (int i = index; i >= 0; --i) {
            if (arr[i] < arr[index]) {

                // There is possibility
                // either the index is
                // used or not
                if (left[i] + 1 == left[index]) {
                    left1.add(arr[i]);
                    left[index] -= 1;
                }
            }
        }

        ArrayList<Integer> right1
            = new ArrayList<>();

        // Starting the right
        for (int i = index; i
                            < right.length;
             ++i) {
            if (arr[index] > arr[i]) {

                if (right[i] + 1
                    == right[index]) {
                    right1.add(arr[i]);
                    right[index] -= 1;
                }
            }
        }
        if (max < 3) {
            System.out.println(-1);
        }
        else {

            // Print the first left1 array
            // then the right array
            for (int i = left1.size() - 1;
                 i >= 0; --i) {
                System.out.print(left1.get(i)
                                 + " ");
            }
            for (int i = 0; i < right1.size();
                 ++i) {
                System.out.print(right1.get(i)
                                 + " ");
            }
        }
    }

    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 9, 8, 1, 7, 6, 5, 4, 3, 2, 1 };
        mountArray(arr);
    }
}
Python3
# python3 program for the above approach

# Function to print the mountain array
# after minimum removals


def mountArray(arr):

    N = len(arr)
    left, right = [1 for _ in range(N)], [1 for _ in range(N)]

    for i in range(0, N):
        for j in range(0, i+1):
            if (arr[j] < arr[i]):

                # This means the
                # previous number is
                # smaller than the number
                left[i] = max(left[j] + 1, left[i])

    # Find the longest decreasing sequence
    for i in range(N-1, -1, -1):
        for j in range(i, N):
            if (arr[j] < arr[i]):
                right[i] = max(right[j] + 1, right[i])

    maxi = 0
    index = 0
    for i in range(1, N-1):
        if (left[i] != 1 and right[i] != 1):

            if (maxi < (left[i] + right[i]) - 1):
                index = i
                maxi = (left[i] + right[i]) - 1

    # Print the longest continuous
    # subsequence from 0 to ith
    # and ith to N index
    left1 = []

    left1.append(arr[index])
    for i in range(index, -1, -1):
        if (arr[i] < arr[index]):

            # There is possibility
            # either the index is
            # used or not
            if (left[i] + 1 == left[index]):
                left1.append(arr[i])
                left[index] -= 1

    right1 = []

    # Starting the right
    for i in range(index, len(right)):
        if (arr[index] > arr[i]):

            if (right[i] + 1 == right[index]):
                right1.append(arr[i])
                right[index] -= 1

    if (maxi < 3):
        print("-1")

    else:

        # Print the first left1 array
        # then the right array
        for i in range(len(left1) - 1, -1, -1):
            print(left1[i], end=" ")

        for i in range(0, len(right1)):
            print(right1[i], end=" ")


# Driver code
if __name__ == "__main__":

    arr = [9, 8, 1, 7, 6, 5, 4, 3, 2, 1]
    mountArray(arr)

    # This code is contributed by rakeshsahni
C#
// C# program for the above approach
using System;
using System.Collections;
class GFG {

  // Function to print the mountain array
  // after minimum removals
  static void mountArray(int []arr)
  {
    int N = arr.Length;
    int []left = new int[N];
    int []right = new int[N];
    for(int i = 0; i < N; i++) {
      left[i] = 1;
      right[i] = 1;
    }

    for (int i = 0; i < N; ++i) {
      for (int j = 0; j <= i; ++j) {
        if (arr[j] < arr[i]) {

          // This means the
          // previous number is
          // smaller than the number
          left[i] = Math.Max(left[j]
                             + 1,
                             left[i]);
        }
      }
    }

    // Find the longest decreasing sequence
    for (int i = N - 1; i >= 0; --i) {
      for (int j = i; j <= N - 1; ++j) {
        if (arr[j] < arr[i]) {
          right[i]
            = Math.Max(right[j]
                       + 1,
                       right[i]);
        }
      }
    }
    int max = 0;
    int index = 0;
    for (int i = 1; i < N - 1; ++i) {
      if (left[i] != 1
          && right[i] != 1) {

        if (max < (left[i]
                   + right[i])
            - 1) {
          index = i;
          max = (left[i]
                 + right[i])
            - 1;
        }
      }
    }

    // Print the longest continuous
    // subsequence from 0 to ith
    // and ith to N index
    ArrayList left1 = new ArrayList();

    left1.Add(arr[index]);
    for (int i = index; i >= 0; --i) {
      if (arr[i] < arr[index]) {

        // There is possibility
        // either the index is
        // used or not
        if (left[i] + 1 == left[index]) {
          left1.Add(arr[i]);
          left[index] -= 1;
        }
      }
    }

    ArrayList right1 = new ArrayList();

    // Starting the right
    for (int i = index; i
         < right.Length;
         ++i) {
      if (arr[index] > arr[i]) {

        if (right[i] + 1
            == right[index]) {
          right1.Add(arr[i]);
          right[index] -= 1;
        }
      }
    }
    if (max < 3) {
      Console.Write(-1);
    }
    else {

      // Print the first left1 array
      // then the right array
      for (int i = left1.Count - 1;
           i >= 0; --i) {
        Console.Write(left1[i]
                      + " ");
      }
      for (int i = 0; i < right1.Count;
           ++i) {
        Console.Write(right1[i]
                      + " ");
      }
    }
  }

  // Driver code
  public static void Main()
  {
    int []arr = { 9, 8, 1, 7, 6, 5, 4, 3, 2, 1 };
    mountArray(arr);
  }
}

// This code is contributed by Samim Hossain Mondal.
JavaScript
   <script>
        // JavaScript code for the above approach 

        // Function to print the mountain array
        // after minimum removals
        function mountArray(arr) {
            let N = arr.length;
            let left = new Array(N).fill(1);
            let right = new Array(N).fill(1);


            for (let i = 0; i < N; ++i) {
                for (let j = 0; j <= i; ++j) {
                    if (arr[j] < arr[i]) {

                        // This means the
                        // previous number is
                        // smaller than the number
                        left[i] = Math.max(left[j]
                            + 1,
                            left[i]);
                    }
                }
            }

            // Find the longest decreasing sequence
            for (let i = N - 1; i >= 0; --i) {
                for (let j = i; j <= N - 1; ++j) {
                    if (arr[j] < arr[i]) {
                        right[i]
                            = Math.max(right[j]
                                + 1,
                                right[i]);
                    }
                }
            }
            let max = 0;
            let index = 0;
            for (let i = 1; i < N - 1; ++i) {
                if (left[i] != 1
                    && right[i] != 1) {

                    if (max < (left[i]
                        + right[i])
                        - 1) {
                        index = i;
                        max = (left[i]
                            + right[i])
                            - 1;
                    }
                }
            }

            // Print the longest continuous
            // subsequence from 0 to ith
            // and ith to N index
            let left1
                = [];

            left1.push(arr[index]);
            for (let i = index; i >= 0; --i) {
                if (arr[i] < arr[index]) {

                    // There is possibility
                    // either the index is
                    // used or not
                    if (left[i] + 1 == left[index]) {
                        left1.push(arr[i]);
                        left[index] -= 1;
                    }
                }
            }

            let right1
                = []

            // Starting the right
            for (let i = index; i
                < right.length;
                ++i) {
                if (arr[index] > arr[i]) {

                    if (right[i] + 1
                        == right[index]) {
                        right1.push(arr[i]);
                        right[index] -= 1;
                    }
                }
            }
            if (max < 3) {
                document.write(-1);
            }
            else {

                // Print the first left1 array
                // then the right array
                for (let i = left1.length - 1;
                    i >= 0; --i) {
                    document.write(left1[i]
                        + " ");
                }
                for (let i = 0; i < right1.length;
                    ++i) {
                    document.write(right1[i]
                        + " ");
                }
            }
        }

        // Driver code
        let arr = [9, 8, 1, 7, 6, 5, 4, 3, 2, 1];
        mountArray(arr);

       // This code is contributed by Potta Lokesh
    </script>

Output
1 7 6 5 4 3 2 1 

Time Complexity: O(N2)
Auxiliary Space: O(N)


Next Article

Similar Reads