model = keras.models.Sequential([
layers.Conv2D(filters=32,
kernel_size=(5, 5),
activation='relu',
input_shape=(IMG_SIZE,
IMG_SIZE,
3),
padding='same'),
layers.MaxPooling2D(2, 2),
layers.Conv2D(filters=64,
kernel_size=(3, 3),
activation='relu',
padding='same'),
layers.MaxPooling2D(2, 2),
layers.Conv2D(filters=128,
kernel_size=(3, 3),
activation='relu',
padding='same'),
layers.MaxPooling2D(2, 2),
layers.Flatten(),
layers.Dense(256, activation='relu'),
layers.BatchNormalization(),
layers.Dense(128, activation='relu'),
layers.Dropout(0.3),
layers.BatchNormalization(),
layers.Dense(3, activation='softmax')
])
model.summary()