Longest Subarray with first element greater than or equal to Last
Last Updated :
11 Mar, 2025
Given an array of integers arr[] of size n. Your task is to find the maximum length subarray such that its first element is greater than or equals to the last element.
Examples:
Input : arr[] = [-5, -1, 7, 5, 1, -2]
Output : 5
Explanation : Subarray {-1, 7, 5, 1, -2} forms maximum length subarray with its first element greater than the last.
Input : arr[] = [1, 5, 7]
Output : 1
Explanation: The given array is in strictly increasing order, thus only individuals elements can form such subarrays.
[Naive Approach] - Using Nested Loops - O(n ^ 2) Time and O(1) Space
The idea is to use nested loops, where the outer loop marks the starting of subarray and the inner loop marks the ending, and for each iteration of inner loop, check if the current element is less than or equals to outer loop element, if so update the maximum subarray length accordingly.
Below is given the implementation:
C++
#include <bits/stdc++.h>
using namespace std;
// Function to find longest subarray with first
// element greater than or equals to last element
int longestSubarr(vector<int> &arr) {
int n = arr.size();
// to store the answer
int ans = 0;
for(int i = 0; i < n; i++) {
for(int j = i; j < n; j++) {
// check if the first element is greater
// than or equals to the last element
if(arr[i] >= arr[j]) {
ans = max(ans, j - i + 1);
}
}
}
return ans;
}
int main() {
vector<int> arr = { -5, -1, 7, 5, 1, -2 };
cout << longestSubarr(arr);
return 0;
}
Java
// Function to find longest subarray with first
// element greater than or equals to last element
import java.util.*;
class GfG {
// Function to find longest subarray with first
// element greater than or equals to last element
static int longestSubarr(int[] arr) {
int n = arr.length;
// to store the answer
int ans = 0;
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
// check if the first element is greater
// than or equals to the last element
if (arr[i] >= arr[j]) {
ans = Math.max(ans, j - i + 1);
}
}
}
return ans;
}
public static void main(String[] args) {
int[] arr = { -5, -1, 7, 5, 1, -2 };
System.out.println(longestSubarr(arr));
}
}
Python
# Function to find longest subarray with first
# element greater than or equals to last element.
def longestSubarr(arr):
n = len(arr)
# to store the answer
ans = 0
for i in range(n):
for j in range(i, n):
# check if the first element is greater
# than or equals to the last element
if arr[i] >= arr[j]:
ans = max(ans, j - i + 1)
return ans
if __name__ == "__main__":
arr = [-5, -1, 7, 5, 1, -2]
print(longestSubarr(arr))
C#
// Function to find longest subarray with first
// element greater than or equals to last element
using System;
using System.Collections.Generic;
class GfG {
// Function to find longest subarray with first
// element greater than or equals to last element
static int longestSubarr(int[] arr) {
int n = arr.Length;
// to store the answer
int ans = 0;
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
// check if the first element is greater
// than or equals to the last element
if (arr[i] >= arr[j]) {
ans = Math.Max(ans, j - i + 1);
}
}
}
return ans;
}
static void Main() {
int[] arr = { -5, -1, 7, 5, 1, -2 };
Console.WriteLine(longestSubarr(arr));
}
}
JavaScript
// Function to find longest subarray with first
// element greater than or equals to the last element.
function longestSubarr(arr) {
let n = arr.length;
// to store the answer
let ans = 0;
for (let i = 0; i < n; i++) {
for (let j = i; j < n; j++) {
// check if the first element is greater
// than or equals to the last element
if (arr[i] >= arr[j])
ans = Math.max(ans, j - i + 1);
}
}
return ans;
}
let arr = [-5, -1, 7, 5, 1, -2];
console.log(longestSubarr(arr));
[Better Approach] - Using Binary Search - O(n * log n) Time and O(n) Space
The idea is to create an auxiliary array ind[] of size n, where ind[i] stores the index of the maximum element in range [0, i], and then perform binary search for each index j of the given array arr[] to find the smallest index i, such that arr[ind[i]] >= arr[j].
Follow the below given steps:
- Create an auxiliary array ind[] of size n, and a counter maxi to store the maximum element.
- Run a loop from 0 to n - 1, and for each index i, if arr[i] > maxi, update maxi and set ind[i] to i, else set ind[i] to ind[i-1].
- Now, again run a loop from 0 to n - 1, and for each element arr[i], find the smallest index j, such that arr[ind[j]] >= arr[i] using binary search.
- Update the answer to the max of answer and i - ind[j] + 1.
Below is given the implementation:
C++
#include <bits/stdc++.h>
using namespace std;
// Function to find the lowest index j such that
// arr[j] >= arr[i] using binary search
int findIndex(vector<int> &arr, vector<int> &ind, int i) {
int low = 0, high = i;
while(low < high) {
int mid = low + (high - low) / 2;
// if arr[ind[mid]] >= arr[i]
// then search in the left half
if(arr[ind[mid]] >= arr[i]) {
high = mid;
}
// else search in the right half
else {
low = mid + 1;
}
}
return ind[low];
}
// Function to find longest subarray with first
// element greater than or equals to last element
int longestSubarr(vector<int> &arr) {
int n = arr.size();
// create the array ind[]
vector<int> ind(n);
// to store the maximum element
int maxi = INT_MIN;
for(int i = 0; i < n; i++) {
// maxi is smaller than arr[i]
// then update maxi and ind[i]
if(maxi < arr[i]) {
maxi = arr[i];
ind[i] = i;
}
// else set ind[i] equal to previous
else {
ind[i] = ind[i - 1];
}
}
// to store the answer
int ans = 0;
for(int i = 0; i < n; i++) {
// find the lowest index j such that
// arr[j] >= arr[i] using binary search
int index = findIndex(arr, ind, i);
// update the answer
ans = max(ans, i - index + 1);
}
return ans;
}
int main() {
vector<int> arr = { -5, -1, 7, 5, 1, -2 };
cout << longestSubarr(arr);
return 0;
}
Java
// Function to find the lowest index j such that
// arr[j] >= arr[i] using binary search
import java.util.*;
class GfG {
// Function to find the lowest index j such that
// arr[j] >= arr[i] using binary search
static int findIndex(int[] arr, int[] ind, int i) {
int low = 0, high = i;
while (low < high) {
int mid = low + (high - low) / 2;
// if arr[ind[mid]] >= arr[i]
// then search in the left half
if (arr[ind[mid]] >= arr[i]) {
high = mid;
}
// else search in the right half
else {
low = mid + 1;
}
}
return ind[low];
}
// Function to find longest subarray with first
// element greater than or equals to last element
static int longestSubarr(int[] arr) {
int n = arr.length;
// create the array ind[]
int[] ind = new int[n];
// to store the maximum element
int maxi = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
// maxi is smaller than arr[i]
// then update maxi and ind[i]
if (maxi < arr[i]) {
maxi = arr[i];
ind[i] = i;
}
// else set ind[i] equal to previous
else {
ind[i] = ind[i - 1];
}
}
// to store the answer
int ans = 0;
for (int i = 0; i < n; i++) {
// find the lowest index j such that
// arr[j] >= arr[i] using binary search
int index = findIndex(arr, ind, i);
// update the answer
ans = Math.max(ans, i - index + 1);
}
return ans;
}
public static void main(String[] args) {
int[] arr = { -5, -1, 7, 5, 1, -2 };
System.out.println(longestSubarr(arr));
}
}
Python
# Function to find the lowest index j such that
# arr[j] >= arr[i] using binary search.
def findIndex(arr, ind, i):
low = 0
high = i
while low < high:
mid = low + (high - low) // 2
# if arr[ind[mid]] >= arr[i]
# then search in the left half
if arr[ind[mid]] >= arr[i]:
high = mid
else:
low = low + 1 if (low + 1) == high else mid + 1
return ind[low]
# Function to find longest subarray with first
# element greater than or equals to last element.
def longestSubarr(arr):
n = len(arr)
# create the array ind[]
ind = [0] * n
# to store the maximum element
maxi = -float('inf')
for i in range(n):
# maxi is smaller than arr[i]
# then update maxi and ind[i]
if maxi < arr[i]:
maxi = arr[i]
ind[i] = i
# else set ind[i] equal to previous
else:
ind[i] = ind[i - 1]
# to store the answer
ans = 0
for i in range(n):
# find the lowest index j such that
# arr[j] >= arr[i] using binary search
index = findIndex(arr, ind, i)
# update the answer
ans = max(ans, i - index + 1)
return ans
if __name__ == "__main__":
arr = [-5, -1, 7, 5, 1, -2]
print(longestSubarr(arr))
C#
// Function to find the lowest index j such that
// arr[j] >= arr[i] using binary search
using System;
using System.Collections.Generic;
class GfG {
// Function to find the lowest index j such that
// arr[j] >= arr[i] using binary search
static int findIndex(int[] arr, int[] ind, int i) {
int low = 0, high = i;
while (low < high) {
int mid = low + (high - low) / 2;
// if arr[ind[mid]] >= arr[i]
// then search in the left half
if (arr[ind[mid]] >= arr[i])
high = mid;
else
low = mid + 1;
}
return ind[low];
}
// Function to find longest subarray with first
// element greater than or equals to last element
static int longestSubarr(int[] arr) {
int n = arr.Length;
// create the array ind[]
int[] ind = new int[n];
// to store the maximum element
int maxi = int.MinValue;
for (int i = 0; i < n; i++) {
// maxi is smaller than arr[i]
// then update maxi and ind[i]
if (maxi < arr[i]) {
maxi = arr[i];
ind[i] = i;
}
// else set ind[i] equal to previous
else {
ind[i] = ind[i - 1];
}
}
// to store the answer
int ans = 0;
for (int i = 0; i < n; i++) {
// find the lowest index j such that
// arr[j] >= arr[i] using binary search
int index = findIndex(arr, ind, i);
// update the answer
ans = Math.Max(ans, i - index + 1);
}
return ans;
}
static void Main() {
int[] arr = { -5, -1, 7, 5, 1, -2 };
Console.WriteLine(longestSubarr(arr));
}
}
JavaScript
// Function to find the lowest index j such that
// arr[j] >= arr[i] using binary search.
function findIndex(arr, ind, i) {
let low = 0, high = i;
while (low < high) {
let mid = low + Math.floor((high - low) / 2);
// if arr[ind[mid]] >= arr[i]
// then search in the left half
if (arr[ind[mid]] >= arr[i]) {
high = mid;
} else {
low = mid + 1;
}
}
return ind[low];
}
// Function to find longest subarray with first
// element greater than or equals to last element.
function longestSubarr(arr) {
let n = arr.length;
// create the array ind[]
let ind = new Array(n).fill(0);
// to store the maximum element
let maxi = -Infinity;
for (let i = 0; i < n; i++) {
// maxi is smaller than arr[i]
// then update maxi and ind[i]
if (maxi < arr[i]) {
maxi = arr[i];
ind[i] = i;
} else {
// else set ind[i] equal to previous
ind[i] = ind[i - 1];
}
}
// to store the answer
let ans = 0;
for (let i = 0; i < n; i++) {
// find the lowest index j such that
// arr[j] >= arr[i] using binary search
let index = findIndex(arr, ind, i);
// update the answer
ans = Math.max(ans, i - index + 1);
}
return ans;
}
let arr = [-5, -1, 7, 5, 1, -2];
console.log(longestSubarr(arr));
[Expected Approach] - Using Stack - O(n) Time and O(n) Space
This problem is mainly a variation of previous greater element.
In the above approach, we are using an auxiliary array to store the indices of required elements, but instead of doing so we can use a stack to store indices i such that arr[i] is maximum in all elements from arr[0] to arr[i]. And thereafter, run a loop from reverse and for each index i, pop the element from stack while arr[i] <= arr[st.top()], and update the answer accordingly.
Follow the below given steps:
- Create a stack st to store the required indices.
- Run a loop from 0 to n - 1, and for each index i, if stack is empty of arr[st.top()] < arr[i], store i in the stack st.
- Now run a loop from n - 1 to 0, and for each index i, pop element from stack st while arr[st.top()] >= arr[i].
- Update the answer to the max of answer and i - st.top().
C++
#include <bits/stdc++.h>
using namespace std;
// Function to find longest subarray with first
// element greater than or equals to last element
int longestSubarr(vector<int> &arr) {
int n = arr.size();
// create stack to store the indices
stack<int> st;
// to store the maximum element
int maxi = INT_MIN;
for(int i = 0; i < n; i++) {
// maxi is smaller than arr[i]
// then update maxi and push i into stack
if(maxi < arr[i]) {
maxi = arr[i];
st.push(i);
}
}
// to store the answer
int ans = 0;
for(int i = n - 1; i >= 0; i--) {
// check if the first element is greater
// than or equals to the last element
while(!st.empty() && arr[st.top()] >= arr[i]) {
st.pop();
}
// if stack is empty
if(st.empty()) {
ans = max(ans, i + 1);
}
else {
ans = max(ans, i - st.top());
}
}
return ans;
}
int main() {
vector<int> arr = { -5, -1, 7, 5, 1, -2 };
cout << longestSubarr(arr);
return 0;
}
Java
// Function to find longest subarray with first
// element greater than or equals to last element
import java.util.*;
class GfG {
// Function to find longest subarray with first
// element greater than or equals to last element
static int longestSubarr(int[] arr) {
int n = arr.length;
// create stack to store the indices
Stack<Integer> st = new Stack<>();
// to store the maximum element
int maxi = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
// maxi is smaller than arr[i]
// then update maxi and push i into stack
if (maxi < arr[i]) {
maxi = arr[i];
st.push(i);
}
}
// to store the answer
int ans = 0;
for (int i = n - 1; i >= 0; i--) {
// check if the first element is greater
// than or equals to the last element
while (!st.empty() && arr[st.peek()] >= arr[i]) {
st.pop();
}
// if stack is empty
if (st.empty()) {
ans = Math.max(ans, i + 1);
}
else {
ans = Math.max(ans, i - st.peek());
}
}
return ans;
}
public static void main(String[] args) {
int[] arr = { -5, -1, 7, 5, 1, -2 };
System.out.println(longestSubarr(arr));
}
}
Python
# Function to find longest subarray with first
# element greater than or equals to last element.
def longestSubarr(arr):
n = len(arr)
# create stack to store the indices
st = []
# to store the maximum element
maxi = -float('inf')
for i in range(n):
# maxi is smaller than arr[i]
# then update maxi and push i into stack
if maxi < arr[i]:
maxi = arr[i]
st.append(i)
# to store the answer
ans = 0
for i in range(n - 1, -1, -1):
# check if the first element is greater
# than or equals to the last element
while st and arr[st[-1]] >= arr[i]:
st.pop()
# if stack is empty
if not st:
ans = max(ans, i + 1)
else:
ans = max(ans, i - st[-1])
return ans
if __name__ == "__main__":
arr = [ -5, -1, 7, 5, 1, -2 ]
print(longestSubarr(arr))
C#
// Function to find longest subarray with first
// element greater than or equals to last element
using System;
using System.Collections.Generic;
class GfG {
// Function to find longest subarray with first
// element greater than or equals to last element
static int longestSubarr(int[] arr) {
int n = arr.Length;
// create stack to store the indices
Stack<int> st = new Stack<int>();
// to store the maximum element
int maxi = int.MinValue;
for (int i = 0; i < n; i++) {
// maxi is smaller than arr[i]
// then update maxi and push i into stack
if (maxi < arr[i]) {
maxi = arr[i];
st.Push(i);
}
}
// to store the answer
int ans = 0;
for (int i = n - 1; i >= 0; i--) {
// check if the first element is greater
// than or equals to the last element
while (st.Count > 0 && arr[st.Peek()] >= arr[i]) {
st.Pop();
}
// if stack is empty
if (st.Count == 0) {
ans = Math.Max(ans, i + 1);
}
else {
ans = Math.Max(ans, i - st.Peek());
}
}
return ans;
}
static void Main() {
int[] arr = { -5, -1, 7, 5, 1, -2 };
Console.WriteLine(longestSubarr(arr));
}
}
JavaScript
// Function to find longest subarray with first
// element greater than or equals to last element.
function longestSubarr(arr) {
let n = arr.length;
// create stack to store the indices
let st = [];
// to store the maximum element
let maxi = -Infinity;
for (let i = 0; i < n; i++) {
// maxi is smaller than arr[i]
// then update maxi and push i into stack
if (maxi < arr[i]) {
maxi = arr[i];
st.push(i);
}
}
// to store the answer
let ans = 0;
for (let i = n - 1; i >= 0; i--) {
// check if the first element is greater
// than or equals to the last element
while (st.length > 0 && arr[st[st.length - 1]] >= arr[i]) {
st.pop();
}
// if stack is empty
if (st.length === 0) {
ans = Math.max(ans, i + 1);
} else {
ans = Math.max(ans, i - st[st.length - 1]);
}
}
return ans;
}
let arr = [ -5, -1, 7, 5, 1, -2 ];
console.log(longestSubarr(arr));
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read