Longest subarray having maximum sum
Last Updated :
02 May, 2025
Given an array arr[] containing n integers. The problem is to find the length of the subarray having maximum sum. If there exists two or more subarrays with maximum sum then print the length of the longest subarray.
Examples:
Input : arr[] = {5, -2, -1, 3, -4}
Output : 4
There are two subarrays with maximum sum:
First is {5}
Second is {5, -2, -1, 3}
Therefore longest one is of length 4.
Input : arr[] = {-2, -3, 4, -1, -2, 1, 5, -3}
Output : 5
The subarray is {4, -1, -2, 1, 5}
Approach: Following are the steps
- Find the maximum sum contiguous subarray. Let this sum be maxSum.
- Find the length of the longest subarray having sum equal to maxSum. Refer this post.
C++
// C++ implementation to find the length of the longest
// subarray having maximum sum
#include <bits/stdc++.h>
using namespace std;
// function to find the maximum sum that
// exists in a subarray
int maxSubArraySum(int arr[], int size)
{
int max_so_far = arr[0];
int curr_max = arr[0];
for (int i = 1; i < size; i++) {
curr_max = max(arr[i], curr_max + arr[i]);
max_so_far = max(max_so_far, curr_max);
}
return max_so_far;
}
// function to find the length of longest
// subarray having sum k
int lenOfLongSubarrWithGivenSum(int arr[], int n, int k)
{
// unordered_map 'um' implemented
// as hash table
unordered_map<int, int> um;
int sum = 0, maxLen = 0;
// traverse the given array
for (int i = 0; i < n; i++) {
// accumulate sum
sum += arr[i];
// when subarray starts from index '0'
if (sum == k)
maxLen = i + 1;
// make an entry for 'sum' if it is
// not present in 'um'
if (um.find(sum) == um.end())
um[sum] = i;
// check if 'sum-k' is present in 'um'
// or not
if (um.find(sum - k) != um.end()) {
// update maxLength
if (maxLen < (i - um[sum - k]))
maxLen = i - um[sum - k];
}
}
// required maximum length
return maxLen;
}
// function to find the length of the longest
// subarray having maximum sum
int lenLongSubarrWithMaxSum(int arr[], int n)
{
int maxSum = maxSubArraySum(arr, n);
return lenOfLongSubarrWithGivenSum(arr, n, maxSum);
}
// Driver program to test above
int main()
{
int arr[] = { 5, -2, -1, 3, -4 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Length of longest subarray having maximum sum = "
<< lenLongSubarrWithMaxSum(arr, n);
return 0;
}
Java
// Java implementation to find
// the length of the longest
// subarray having maximum sum
import java.util.*;
class GFG
{
// function to find the
// maximum sum that
// exists in a subarray
static int maxSubArraySum(int arr[],
int size)
{
int max_so_far = arr[0];
int curr_max = arr[0];
for (int i = 1; i < size; i++)
{
curr_max = Math.max(arr[i],
curr_max + arr[i]);
max_so_far = Math.max(max_so_far,
curr_max);
}
return max_so_far;
}
// function to find the
// length of longest
// subarray having sum k
static int lenOfLongSubarrWithGivenSum(int arr[],
int n, int k)
{
// unordered_map 'um' implemented
// as hash table
HashMap<Integer,
Integer> um = new HashMap<Integer,
Integer>();
int sum = 0, maxLen = 0;
// traverse the given array
for (int i = 0; i < n; i++)
{
// accumulate sum
sum += arr[i];
// when subarray starts
// from index '0'
if (sum == k)
maxLen = i + 1;
// make an entry for 'sum' if
// it is not present in 'um'
if (um.containsKey(sum))
um.put(sum, i);
// check if 'sum-k' is present
// in 'um' or not
if (um.containsKey(sum - k))
{
// update maxLength
if (maxLen < (i - um.get(sum - k)))
maxLen = i - um.get(sum - k);
}
}
// required maximum length
return maxLen;
}
// function to find the length
// of the longest subarray
// having maximum sum
static int lenLongSubarrWithMaxSum(int arr[], int n)
{
int maxSum = maxSubArraySum(arr, n);
return lenOfLongSubarrWithGivenSum(arr, n, maxSum);
}
// Driver Code
public static void main(String args[])
{
int arr[] = { 5, -2, -1, 3, -4 };
int n = arr.length;
System.out.println("Length of longest subarray " +
"having maximum sum = " +
lenLongSubarrWithMaxSum(arr, n));
}
}
// This code is contributed by Arnab Kundu
Python
# Python3 implementation to find the length
# of the longest subarray having maximum sum
# function to find the maximum sum that
# exists in a subarray
def maxSubArraySum(arr, size):
max_so_far = arr[0]
curr_max = arr[0]
for i in range(1,size):
curr_max = max(arr[i], curr_max + arr[i])
max_so_far = max(max_so_far, curr_max)
return max_so_far
# function to find the length of longest
# subarray having sum k
def lenOfLongSubarrWithGivenSum(arr, n, k):
# unordered_map 'um' implemented
# as hash table
um = dict()
Sum, maxLen = 0, 0
# traverse the given array
for i in range(n):
# accumulate Sum
Sum += arr[i]
# when subarray starts from index '0'
if (Sum == k):
maxLen = i + 1
# make an entry for 'Sum' if it is
# not present in 'um'
if (Sum not in um.keys()):
um[Sum] = i
# check if 'Sum-k' is present in 'um'
# or not
if (Sum in um.keys()):
# update maxLength
if ((Sum - k) in um.keys() and
maxLen < (i - um[Sum - k])):
maxLen = i - um[Sum - k]
# required maximum length
return maxLen
# function to find the length of the longest
# subarray having maximum Sum
def lenLongSubarrWithMaxSum(arr, n):
maxSum = maxSubArraySum(arr, n)
return lenOfLongSubarrWithGivenSum(arr, n, maxSum)
# Driver Code
arr = [5, -2, -1, 3, -4]
n = len(arr)
print("Length of longest subarray having maximum sum = ",
lenLongSubarrWithMaxSum(arr, n))
# This code is contributed by mohit kumar
C#
// C# implementation to find
// the length of the longest
// subarray having maximum sum
using System;
using System.Collections.Generic;
public class GFG{
// function to find the
// maximum sum that
// exists in a subarray
static int maxSubArraySum(int []arr,
int size)
{
int max_so_far = arr[0];
int curr_max = arr[0];
for (int i = 1; i < size; i++)
{
curr_max = Math.Max(arr[i],
curr_max + arr[i]);
max_so_far = Math.Max(max_so_far,
curr_max);
}
return max_so_far;
}
// function to find the
// length of longest
// subarray having sum k
static int lenOfLongSubarrWithGivenSum(int []arr,
int n, int k)
{
// unordered_map 'um' implemented
// as hash table
Dictionary<int,
int> um = new Dictionary<int,
int>();
int sum = 0, maxLen = 0;
// traverse the given array
for (int i = 0; i < n; i++)
{
// accumulate sum
sum += arr[i];
// when subarray starts
// from index '0'
if (sum == k)
maxLen = i + 1;
// make an entry for 'sum' if
// it is not present in 'um'
if (um.ContainsKey(sum))
um.Add(sum, i);
// check if 'sum-k' is present
// in 'um' or not
if (um.ContainsKey(sum - k))
{
// update maxLength
if (maxLen < (i - um[sum - k]))
maxLen = i - um[sum - k];
}
}
// required maximum length
return maxLen;
}
// function to find the length
// of the longest subarray
// having maximum sum
static int lenLongSubarrWithMaxSum(int []arr, int n)
{
int maxSum = maxSubArraySum(arr, n);
return lenOfLongSubarrWithGivenSum(arr, n, maxSum);
}
// Driver Code
public static void Main()
{
int []arr = { 5, -2, -1, 3, -4 };
int n = arr.Length;
Console.WriteLine("Length of longest subarray " +
"having maximum sum = " +
lenLongSubarrWithMaxSum(arr, n));
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// Javascript implementation to find the length of the longest
// subarray having maximum sum
// function to find the maximum sum that
// exists in a subarray
function maxSubArraySum(arr, size)
{
var max_so_far = arr[0];
var curr_max = arr[0];
for (var i = 1; i < size; i++) {
curr_max = Math.max(arr[i], curr_max + arr[i]);
max_so_far = Math.max(max_so_far, curr_max);
}
return max_so_far;
}
// function to find the length of longest
// subarray having sum k
function lenOfLongSubarrWithGivenSum( arr, n, k)
{
// unordered_map 'um' implemented
// as hash table
var um = new Map();
var sum = 0, maxLen = 0;
// traverse the given array
for (var i = 0; i < n; i++) {
// accumulate sum
sum += arr[i];
// when subarray starts from index '0'
if (sum == k)
maxLen = i + 1;
// make an entry for 'sum' if it is
// not present in 'um'
if (!um.has(sum))
um.set(sum, i);
// check if 'sum-k' is present in 'um'
// or not
if (um.has(sum - k)) {
// update maxLength
if (maxLen < (i - um.get(sum-k)))
maxLen = i - um.get(sum-k)
}
}
// required maximum length
return maxLen;
}
// function to find the length of the longest
// subarray having maximum sum
function lenLongSubarrWithMaxSum(arr, n)
{
var maxSum = maxSubArraySum(arr, n);
return lenOfLongSubarrWithGivenSum(arr, n, maxSum);
}
// Driver program to test above
var arr = [5, -2, -1, 3, -4];
var n = arr.length;
document.write( "Length of longest subarray having maximum sum = "
+ lenLongSubarrWithMaxSum(arr, n));
// This code is contributed by rrrtnx.
</script>
OutputLength of longest subarray having maximum sum = 4
Time Complexity: O(n).
Auxiliary Space: O(n).
Approach: Kadane’s algorithm
Following are the steps:
- traverse the array.
- Keep track of the maximum sum subarray ending at each index.
- Then, we return the length of the subarray with the maximum sum among all the subarrays.
Below is the implementation:
C++
// C++ program to find the length of the subarray having maximum sum
#include <iostream>
#include <algorithm>
using namespace std;
int maxSubArrayLen(int arr[], int n) {
// Initializing the variables
int max_so_far = arr[0];
int max_ending_here = arr[0];
int max_len = 1;
int curr_len = 1;
// Traversing through the array to find the subarray
for (int i = 1; i < n; i++) {
if (max_ending_here < 0) {
max_ending_here = arr[i];
curr_len = 1;
} else {
max_ending_here += arr[i];
curr_len++;
}
if (max_ending_here > max_so_far) {
max_so_far = max_ending_here;
max_len = curr_len;
} else if (max_ending_here == max_so_far) {
max_len = max(max_len, curr_len);
}
}
return max_len;
}
// Driver code
int main() {
// Input array
int arr[] = {5, -2, -1, 3, -4};
int n = sizeof(arr) / sizeof(arr[0]);
int max_len = maxSubArrayLen(arr, n);
cout << "Length of the subarray with maximum sum = " << max_len << endl;
return 0;
}
Java
//Code in java for above approach
public class Main {
public static int maxSubArrayLen(int[] arr, int n) {
// Initializing the variables
int max_so_far = arr[0];
int max_ending_here = arr[0];
int max_len = 1;
int curr_len = 1;
// Traversing through the array to find the subarray
for (int i = 1; i < n; i++) {
if (max_ending_here < 0) {
max_ending_here = arr[i];
curr_len = 1;
} else {
max_ending_here += arr[i];
curr_len++;
}
if (max_ending_here > max_so_far) {
max_so_far = max_ending_here;
max_len = curr_len;
} else if (max_ending_here == max_so_far) {
max_len = Math.max(max_len, curr_len);
}
}
return max_len;
}
public static void main(String[] args) {
// Input array
int[] arr = {5, -2, -1, 3, -4};
int n = arr.length;
int max_len = maxSubArrayLen(arr, n);
System.out.println("Length of the subarray with maximum sum = " + max_len);
}
}
Python
def maxSubArrayLen(arr):
# Initializing the variables
max_so_far = arr[0]
max_ending_here = arr[0]
max_len = 1
curr_len = 1
# Traversing through the array to find the subarray
for i in range(1, len(arr)):
if max_ending_here < 0:
max_ending_here = arr[i]
curr_len = 1
else:
max_ending_here += arr[i]
curr_len += 1
if max_ending_here > max_so_far:
max_so_far = max_ending_here
max_len = curr_len
elif max_ending_here == max_so_far:
max_len = max(max_len, curr_len)
return max_len
# Driver code
if __name__ == '__main__':
# Input array
arr = [5, -2, -1, 3, -4]
max_len = maxSubArrayLen(arr)
print(f"Length of the subarray with maximum sum = {max_len}")
C#
using System;
public class GFG
{
public static int MaxSubArrayLen(int[] arr, int n)
{
// Initializing the variables
int maxSoFar = arr[0];
int maxEndingHere = arr[0];
int maxLen = 1;
int currLen = 1;
// Traversing through the array to find the subarray
for (int i = 1; i < n; i++)
{
if (maxEndingHere < 0)
{
maxEndingHere = arr[i];
currLen = 1;
}
else
{
maxEndingHere += arr[i];
currLen++;
}
if (maxEndingHere > maxSoFar)
{
maxSoFar = maxEndingHere;
maxLen = currLen;
}
else if (maxEndingHere == maxSoFar)
{
maxLen = Math.Max(maxLen, currLen);
}
}
return maxLen;
}
// Driver code
public static void Main(string[] args)
{
// Input array
int[] arr = { 5, -2, -1, 3, -4 };
int n = arr.Length;
int maxLen = MaxSubArrayLen(arr, n);
Console.WriteLine("Length of the subarray with maximum sum = " + maxLen);
}
}
JavaScript
function maxSubArrayLen(arr) {
// Initializing the variables
let max_so_far = arr[0];
let max_ending_here = arr[0];
let max_len = 1;
let curr_len = 1;
// Traversing through the array to find the subarray
for (let i = 1; i < arr.length; i++) {
if (max_ending_here < 0) {
max_ending_here = arr[i];
curr_len = 1;
} else {
max_ending_here += arr[i];
curr_len++;
}
if (max_ending_here > max_so_far) {
max_so_far = max_ending_here;
max_len = curr_len;
} else if (max_ending_here === max_so_far) {
max_len = Math.max(max_len, curr_len);
}
}
return max_len;
}
// Driver code
const arr = [5, -2, -1, 3, -4];
const max_len = maxSubArrayLen(arr);
console.log("Length of the subarray with maximum sum = " + max_len);
OutputLength of the subarray with maximum sum = 4
Time Complexity: O(n)
Auxiliary Space: O(1)
Similar Reads
Longest subsequence having maximum sum
Given an array arr[] of size N, the task is to find the longest non-empty subsequence from the given array whose sum is maximum. Examples: Input: arr[] = { 1, 2, -4, -2, 3, 0 } Output: 1 2 3 0 Explanation: Sum of elements of the subsequence {1, 2, 3, 0} is 6 which is the maximum possible sum. Theref
8 min read
Longest subarray having sum K | Set 2
Given an array arr[] of size N containing integers. The task is to find the length of the longest sub-array having sum equal to the given value K. Examples: Input: arr[] = {2, 3, 4, 2, 1, 1}, K = 10 Output: 4 Explanation: The subarray {3, 4, 2, 1} gives summation as 10. Input: arr[] = {6, 8, 14, 9,
14 min read
Maximum sum bitonic subarray
Given an array containing n numbers. The problem is to find the maximum sum bitonic subarray. A bitonic subarray is a subarray in which elements are first increasing and then decreasing. A strictly increasing or strictly decreasing subarray is also considered a bitonic subarray. Time Complexity of O
15+ min read
Maximum Sum Alternating Subarray
Given an array arr[] of size N, the task is to find the maximum alternating sum of a subarray possible for a given array. Alternating Subarray Sum: Considering a subarray {arr[i], arr[j]}, alternating sum of the subarray is arr[i] - arr[i + 1] + arr[i + 2] - ........ (+ / -) arr[j]. Examples: Input:
6 min read
Maximum Subarray Sum in a given Range
Given an array of n numbers, the task is to answer the following queries: maximumSubarraySum(start, end) : Find the maximum subarray sum in the range from array index 'start' to 'end'. Also see : Range Query With Update Required Examples: Input : arr[] = {1, 3, -4, 5, -2} Query 1: start = 0, end = 4
15+ min read
Maximum Subarray Sum - Kadane's Algorithm
Given an array arr[], the task is to find the subarray that has the maximum sum and return its sum. Examples: Input: arr[] = {2, 3, -8, 7, -1, 2, 3}Output: 11Explanation: The subarray {7, -1, 2, 3} has the largest sum 11. Input: arr[] = {-2, -4}Output: -2Explanation: The subarray {-2} has the larges
10 min read
Longest Subarrays having each Array element as the maximum
Given an array arr[] of length N, the task is to find the longest subarray for each array element arr[i], which contains arr[i] as the maximum. Examples: Input: arr[] = {1, 2, 3, 0, 1} Output: 1 2 5 1 2 Explanation: The longest subarray having arr[0] as the largest is {1} The longest subarray having
7 min read
Longest Subarray With Sum K
Given an array arr[] of size n containing integers, the task is to find the length of the longest subarray having sum equal to the given value k. Note: If there is no subarray with sum equal to k, return 0. Examples: Input: arr[] = [10, 5, 2, 7, 1, -10], k = 15Output: 6Explanation: Subarrays with su
11 min read
Find Maximum Sum Strictly Increasing Subarray
Given an array of positive integers. Find the maximum sum of strictly increasing subarrays. Note that this problem is different from maximum subarray sum and maximum sum increasing subsequence problems. Examples: Input : arr[] = {1, 2, 3, 2, 5, 1, 7}Output : 8Explanation : Some Strictly increasing s
7 min read
Longest increasing subarray
Given an array containing n numbers. The problem is to find the length of the longest contiguous subarray such that every element in the subarray is strictly greater than its previous element in the same subarray. Time Complexity should be O(n). Examples: Input : arr[] = {5, 6, 3, 5, 7, 8, 9, 1, 2}
15+ min read