Open In App

Longest palindromic string possible by concatenating strings from a given array

Last Updated : 22 Jun, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array of strings S[] consisting of N distinct strings of length M. The task is to generate the longest possible palindromic string by concatenating some strings from the given array.

Examples:

Input: N = 4, M = 3, S[] = {"omg", "bbb", "ffd", "gmo"}
Output: omgbbbgmo
Explanation: Strings "omg" and "gmo" are reverse of each other and "bbb" is itself a palindrome. Therefore, concatenating "omg" + "bbb" + "gmo" generates the longest palindromic string "omgbbbgmo".

Input: N = 4, M = 3, s[]={"poy", "fgh", "hgf", "yop"}
Output: poyfghhgfyop

 

Approach: Follow the steps below to solve the problem:

  • Initialize a Set and insert each string from the given array in the Set.
  • Initialize two vectors left_ans and right_ans to keep track of palindromic strings obtained.
  • Now, iterate over the array of strings and check if its reverse exists in the Set or not.
  • If found to be true, insert one of the strings into left_ans and the other into right_ans and erase both the strings from the Set to avoid repetition.
  • If a string is a palindrome and its pair does not exist in the Set, then that string needs to be appended to the middle of the resultant string.
  • Print the resultant string.

Below is the implementation of the above approach:

C++
// C++ program for the above approach 
#include <bits/stdc++.h> 
using namespace std; 

void max_len(string s[], int N, int M) 
{ 
    // Stores the distinct strings 
    // from the given array 
    unordered_set<string> set_str; 

    // Insert the strings into set 
    for (int i = 0; i < N; i++) { 

        set_str.insert(s[i]); 
    } 

    // Stores the left and right 
    // substrings of the given string 
    vector<string> left_ans, right_ans; 

    // Stores the middle substring 
    string mid; 

    // Traverse the array of strings 
    for (int i = 0; i < N; i++) { 

        string t = s[i]; 

        // Reverse the current string 
        reverse(t.begin(), t.end()); 

        // Checking if the string is 
        // itself a palindrome or not 
        if (t == s[i]) { 

            mid = t; 
        } 

        // Check if the reverse of the 
        // string is present or not 
        else if (set_str.find(t) 
                != set_str.end()) { 

            // Append to the left substring 
            left_ans.push_back(s[i]); 

            // Append to the right substring 
            right_ans.push_back(t); 

            // Erase both the strings 
            // from the set 
            set_str.erase(s[i]); 
            set_str.erase(t); 
        } 
    } 

    // Print the left substring 
    for (auto x : left_ans) { 

        cout << x; 
    } 

    // Print the middle substring 
    cout << mid; 

    reverse(right_ans.begin(), 
            right_ans.end()); 

    // Print the right substring 
    for (auto x : right_ans) { 

        cout << x; 
    } 
} 

// Driver Code 
int main() 
{ 
    int N = 4, M = 3; 
    string s[] = { "omg", "bbb", 
                "ffd", "gmo" }; 

    // Function Call 
    max_len(s, N, M); 

    return 0; 
} 
Java
// Java program for the 
// above approach 
import java.util.*;
class GFG{ 
    
static String reverse(String input) 
{
  char[] a = input.toCharArray();
  int l, r = a.length - 1;
  
  for (l = 0; l < r; l++, r--) 
  {
    char temp = a[l];
    a[l] = a[r];
    a[r] = temp;
  }
  
  return String.valueOf(a);
}

static void max_len(String s[], 
                    int N, int M) 
{ 
  // Stores the distinct Strings 
  // from the given array 
  HashSet<String> set_str = 
          new HashSet<>(); 

  // Insert the Strings 
  // into set 
  for (int i = 0; i < N; i++) 
  { 
    set_str.add(s[i]); 
  } 

  // Stores the left and right 
  // subStrings of the given String 
  Vector<String> left_ans =
                 new Vector<>();
  Vector<String> right_ans = 
                 new Vector<>(); 

  // Stores the middle 
  // subString 
  String mid = ""; 

  // Traverse the array 
  // of Strings 
  for (int i = 0; i < N; i++) 
  {
    String t = s[i]; 

    // Reverse the current 
    // String 
    t = reverse(t);

    // Checking if the String is 
    // itself a palindrome or not 
    if (t == s[i]) 
    {
      mid = t; 
    } 

    // Check if the reverse of the 
    // String is present or not 
    else if (set_str.contains(t)) 
    {
      // Append to the left 
      // subString 
      left_ans.add(s[i]); 

      // Append to the right 
      // subString 
      right_ans.add(t); 

      // Erase both the Strings 
      // from the set 
      set_str.remove(s[i]); 
      set_str.remove(t); 
    } 
  } 

  // Print the left subString 
  for (String x : left_ans) 
  {
    System.out.print(x); 
  } 

  // Print the middle 
  // subString 
  System.out.print(mid); 

  Collections.reverse(right_ans);
  // Print the right subString 
  
  for (String x : right_ans) 
  {
    System.out.print(x); 
  } 
} 

// Driver Code 
public static void main(String[] args) 
{ 
  int N = 4, M = 3; 
  String s[] = {"omg", "bbb", 
                "ffd", "gmo"}; 

  // Function Call 
  max_len(s, N, M); 
} 
} 

// This code is contributed by Rajput-Ji 
Python3
# Python3 program for the above approach
def max_len(s, N, M):
    
    # Stores the distinct strings
    # from the given array
    set_str = {}
 
    # Insert the strings into set
    for i in s:
        set_str[i] = 1
 
    # Stores the left and right
    # substrings of the given string
    left_ans, right_ans = [], []
 
    # Stores the middle substring
    mid = ""
 
    # Traverse the array of strings
    for i in range(N):
        t = s[i]
 
        # Reverse the current string
        t = t[::-1]
 
        # Checking if the is
        # itself a palindrome or not
        if (t == s[i]):
            mid = t
 
        # Check if the reverse of the
        # is present or not
        elif (t in set_str):
 
            # Append to the left substring
            left_ans.append(s[i])
 
            # Append to the right substring
            right_ans.append(t)
 
            # Erase both the strings
            # from the set
            del set_str[s[i]]
            del set_str[t]
 
    # Print the left substring
    for x in left_ans:
        print(x, end = "")
 
    # Print the middle substring
    print(mid, end = "")
 
    right_ans = right_ans[::-1]
 
    # Print the right substring
    for x in right_ans:
        print(x, end = "")
 
# Driver Code
if __name__ == '__main__':
    
    N = 4
    M = 3
    
    s = [ "omg", "bbb", "ffd", "gmo"]
 
    # Function call
    max_len(s, N, M)
    
# This code is contributed by mohit kumar 29 
C#
// C# program for the 
// above approach 
using System;
using System.Collections.Generic;
class GFG{ 
    
static String reverse(String input) 
{
  char[] a = input.ToCharArray();
  int l, r = a.Length - 1;

  for (l = 0; l < r; l++, r--) 
  {
    char temp = a[l];
    a[l] = a[r];
    a[r] = temp;
  }

  return String.Join("", a);
}

static void max_len(String []s, 
                    int N, int M) 
{ 
  // Stores the distinct Strings 
  // from the given array 
  HashSet<String> set_str = 
          new HashSet<String>(); 

  // Insert the Strings 
  // into set 
  for (int i = 0; i < N; i++) 
  { 
    set_str.Add(s[i]); 
  } 

  // Stores the left and right 
  // subStrings of the given String 
  List<String> left_ans =
       new List<String>();
  List<String> right_ans = 
       new List<String>(); 

  // Stores the middle 
  // subString 
  String mid = ""; 

  // Traverse the array 
  // of Strings 
  for (int i = 0; i < N; i++) 
  {
    String t = s[i]; 

    // Reverse the current 
    // String 
    t = reverse(t);

    // Checking if the String is 
    // itself a palindrome or not 
    if (t == s[i]) 
    {
      mid = t; 
    } 

    // Check if the reverse of the 
    // String is present or not 
    else if (set_str.Contains(t)) 
    {
      // Append to the left 
      // subString 
      left_ans.Add(s[i]); 

      // Append to the right 
      // subString 
      right_ans.Add(t); 

      // Erase both the Strings 
      // from the set 
      set_str.Remove(s[i]); 
      set_str.Remove(t); 
    } 
  } 

  // Print the left subString 
  foreach (String x in left_ans) 
  {
    Console.Write(x); 
  } 

  // Print the middle 
  // subString 
  Console.Write(mid); 

  right_ans.Reverse();
  // Print the right subString 

  foreach (String x in right_ans) 
  {
    Console.Write(x); 
  } 
} 

// Driver Code 
public static void Main(String[] args) 
{ 
  int N = 4, M = 3; 
  String []s = {"omg", "bbb", 
                "ffd", "gmo"}; 

  // Function Call 
  max_len(s, N, M); 
} 
} 

// This code is contributed by 29AjayKumar
JavaScript
<script>
// Javascript program for the
// above approach

function reverse(input)
{
    let a = input.split("");
    a.reverse();
    return a.join("");
}

function max_len(s, N, M)
{

    // Stores the distinct Strings
  // from the given array
  let set_str = new Set();
 
  // Insert the Strings
  // into set
  for (let i = 0; i < N; i++)
  {
    set_str.add(s[i]);
  }
 
  // Stores the left and right
  // subStrings of the given String
  let left_ans = [];
  
  let right_ans = [];
 
  // Stores the middle
  // subString
  let mid = "";
 
  // Traverse the array
  // of Strings
  for (let i = 0; i < N; i++)
  {
    let t = s[i];
 
    // Reverse the current
    // String
    t = reverse(t);
 
    // Checking if the String is
    // itself a palindrome or not
    if (t == s[i])
    {
      mid = t;
    }
 
    // Check if the reverse of the
    // String is present or not
    else if (set_str.has(t))
    {
      // Append to the left
      // subString
      left_ans.push(s[i]);
 
      // Append to the right
      // subString
      right_ans.push(t);
 
      // Erase both the Strings
      // from the set
      set_str.delete(s[i]);
      set_str.delete(t);
    }
  }
 
  // Print the left subString
  for (let x=0;x< left_ans.length;x++)
  {
    document.write(left_ans[x]);
  }
 
  // Print the middle
  // subString
  document.write(mid);
 
  (right_ans).reverse();
  // Print the right subString
   
  for (let x = 0; x < right_ans.length; x++)
  {
    document.write(right_ans[x]);
  }
}

// Driver Code

let N = 4, M = 3;
let s=["omg", "bbb",
                "ffd", "gmo"];
// Function Call
max_len(s, N, M);

// This code is contributed by patel2127
</script>

Output:

omgbbbgmo

Time Complexity: O(N * M)
Auxiliary Space: O(N * M)


Next Article
Article Tags :
Practice Tags :

Similar Reads