Leaf nodes from Preorder of a Binary Search Tree
Last Updated :
18 May, 2025
Given Preorder traversal of a Binary Search Tree. Then the task is to print leaf nodes of the Binary Search Tree from the given preorder.
Examples:
Input: preorder[] = [4, 2, 1, 3, 6, 5]
Output: [1, 3, 5]
Explaination: 1, 3 and 5 are the leaf nodes as shown in the figure.
Input: preorder[] = [5, 2, 10]
Output: [2, 10]
Explaination: 2 and 10 are the leaf nodes as shown in the figure.
Input: preorder[] = [8, 2, 5, 10, 12]
Output: [5, 12]
Explaination: 5 and 12 are the leaf nodes as shown in the figure.
[Expected Approach - 1] Using Inorder and Preorder - O(nlogn) Time and O(n) Space
The idea is to find Inorder by sorting the input preorder traversal, then traverse the tree in preorder fashion (using both inorder and preorder traversals) and while traversing store the leaf nodes.
How to traverse in preorder fashion using two arrays representing inorder and preorder traversals?
- We iterate the preorder array and for each element find that element in the inorder array. For searching, we can use binary search, since inorder traversal of the binary search tree is always sorted. Now, for each element of preorder array, in binary search, we set the range [l, r].
- And when l == r, the leaf node is found. So, initially, l = 0 and l = n - 1 for first element (i.e root) of preorder array. Now, to search for the element on the left subtree of the root, set l = 0 and r= index of root - 1. Also, for all element of right subtree set l = index of root + 1 and r = n -1. Recursively, follow this, until l == r.
C++
// C++ program to print leaf node from preorder of
// binary search tree using inorder + preorder
#include <bits/stdc++.h>
using namespace std;
int binarySearch(vector<int>& inorder, int l,
int r, int d) {
int mid = (l + r) >> 1;
if (inorder[mid] == d)
return mid;
else if (inorder[mid] > d)
return binarySearch(inorder, l, mid - 1, d);
else
return binarySearch(inorder, mid + 1, r, d);
}
// Function to find Leaf Nodes by doing preorder
// traversal of tree using preorder and inorder vectors.
void leafNodesRec(vector<int>& preorder, vector<int>& inorder,
int l, int r, int& ind, vector<int>& leaves) {
// If l == r, therefore no right or left subtree.
// So, it must be leaf Node, store it.
if (l == r) {
leaves.push_back(inorder[l]);
ind++;
return;
}
// If array is out of bound, return.
if (l < 0 || l > r || r >= inorder.size())
return;
// Finding the index of preorder element
// in inorder vector using binary search.
int loc = binarySearch(inorder, l, r, preorder[ind]);
ind++;
// Finding on the left subtree.
leafNodesRec(preorder, inorder, l, loc - 1,
ind, leaves);
// Finding on the right subtree.
leafNodesRec(preorder, inorder, loc + 1, r,
ind, leaves);
}
// Finds leaf nodes from given preorder traversal.
vector<int> leafNodes(vector<int>& preorder) {
int n = preorder.size();
vector<int> inorder(n);
vector<int> leaves;
// Copy the preorder into another vector.
for (int i = 0; i < n; i++)
inorder[i] = preorder[i];
// Finding the inorder by sorting the vector.
sort(inorder.begin(), inorder.end());
// Point to the index in preorder.
int ind = 0;
// Find the Leaf Nodes.
leafNodesRec(preorder, inorder, 0, n - 1,
ind, leaves);
return leaves;
}
int main() {
vector<int> preorder = {4, 2, 1, 3, 6, 5};
vector<int> result = leafNodes(preorder);
for (int val : result) {
cout << val << " ";
}
return 0;
}
Java
import java.util.ArrayList;
import java.util.Arrays;
class GfG {
static int binarySearch(ArrayList<Integer> inorder, int l, int r, int d) {
int mid = (l + r) / 2;
if (inorder.get(mid) == d)
return mid;
else if (inorder.get(mid) > d)
return binarySearch(inorder, l, mid - 1, d);
else
return binarySearch(inorder, mid + 1, r, d);
}
static void leafNodesRec(int[] preorder, ArrayList<Integer> inorder,
int l, int r, int[] ind, ArrayList<Integer> leaves) {
if (l == r) {
leaves.add(inorder.get(l));
ind[0]++;
return;
}
if (l < 0 || l > r || r >= inorder.size())
return;
int loc = binarySearch(inorder, l, r, preorder[ind[0]]);
ind[0]++;
leafNodesRec(preorder, inorder, l, loc - 1, ind, leaves);
leafNodesRec(preorder, inorder, loc + 1, r, ind, leaves);
}
static ArrayList<Integer> leafNodes(int[] preorder) {
int n = preorder.length;
ArrayList<Integer> inorder = new ArrayList<>();
for (int val : preorder)
inorder.add(val);
ArrayList<Integer> leaves = new ArrayList<>();
inorder.sort(null); // sort inorder
int[] ind = {0};
leafNodesRec(preorder, inorder, 0, n - 1, ind, leaves);
return leaves;
}
public static void main(String[] args) {
int[] preorder = {4, 2, 1, 3, 6, 5};
ArrayList<Integer> result = leafNodes(preorder);
for (int val : result) {
System.out.print(val + " ");
}
}
}
Python
# Python program to print leaf nodes from preorder of
# binary search tree using inorder + preorder
def binarySearch(inorder, l, r, d):
mid = (l + r) // 2
if inorder[mid] == d:
return mid
elif inorder[mid] > d:
return binarySearch(inorder, l, mid - 1, d)
else:
return binarySearch(inorder, mid + 1, r, d)
# Function to find Leaf Nodes by doing preorder
# traversal of tree using preorder and inorder lists.
def leafNodesRec(preorder, inorder, l, r, ind, leaves):
# If l == r, therefore no right or left subtree.
# So, it must be leaf Node, store it.
if l == r:
leaves.append(inorder[l])
ind[0] += 1
return
# If array is out of bounds, return.
if l < 0 or l > r or r >= len(inorder):
return
# Finding the index of preorder element in
# inorder list using binary search.
loc = binarySearch(inorder, l, r, preorder[ind[0]])
ind[0] += 1
# Finding on the left subtree.
leafNodesRec(preorder, inorder, l, loc - 1, ind, leaves)
# Finding on the right subtree.
leafNodesRec(preorder, inorder, loc + 1, r, ind, leaves)
# Finds leaf nodes from given preorder traversal.
def leafNodes(preorder):
n = len(preorder)
inorder = sorted(preorder)
leaves = []
# Point to the index in preorder.
ind = [0]
# Find the Leaf Nodes.
leafNodesRec(preorder, inorder, 0, n - 1, ind, leaves)
return leaves
if __name__ == "__main__":
preorder = [4, 2, 1, 3, 6, 5]
result = leafNodes(preorder)
for val in result:
print(val, end=" ")
C#
using System;
using System.Collections.Generic;
class GfG {
static int BinarySearch(List<int> inorder, int l, int r, int d) {
int mid = (l + r) / 2;
if (inorder[mid] == d)
return mid;
else if (inorder[mid] > d)
return BinarySearch(inorder, l, mid - 1, d);
else
return BinarySearch(inorder, mid + 1, r, d);
}
static void LeafNodesRec(int[] preorder, List<int> inorder, int l,
int r, int[] ind, List<int> leaves) {
if (l == r) {
leaves.Add(inorder[l]);
ind[0]++;
return;
}
if (l < 0 || l > r || r >= inorder.Count)
return;
int loc = BinarySearch(inorder, l, r, preorder[ind[0]]);
ind[0]++;
LeafNodesRec(preorder, inorder, l, loc - 1, ind, leaves);
LeafNodesRec(preorder, inorder, loc + 1, r, ind, leaves);
}
static List<int> leafNodes(int[] preorder) {
int n = preorder.Length;
// Convert array to List and sort for inorder
List<int> inorder = new List<int>(preorder);
inorder.Sort();
List<int> leaves = new List<int>();
int[] ind = new int[1] { 0 };
LeafNodesRec(preorder, inorder, 0, n - 1, ind, leaves);
return leaves;
}
static void Main() {
int[] preorder = {4, 2, 1, 3, 6, 5};
List<int> result = leafNodes(preorder);
foreach (int val in result) {
Console.Write(val + " ");
}
}
}
JavaScript
// JavaScript program to print leaf nodes from preorder of
// binary search tree using inorder + preorder
function binarySearch(inorder, l, r, d) {
const mid = Math.floor((l + r) / 2);
if (inorder[mid] === d) {
return mid;
} else if (inorder[mid] > d) {
return binarySearch(inorder, l, mid - 1, d);
} else {
return binarySearch(inorder, mid + 1, r, d);
}
}
// Function to find Leaf Nodes by doing preorder
// traversal of tree using preorder and inorder arrays.
function leafNodesRec(preorder, inorder, l, r, ind, leaves) {
// If l == r, therefore no right or left subtree.
// So, it must be a leaf Node, store it.
if (l === r) {
leaves.push(inorder[l]);
ind[0]++;
return;
}
// If array is out of bounds, return.
if (l < 0 || l > r || r >= inorder.length) {
return;
}
// Finding the index of preorder element
// in inorder array using binary search.
const loc = binarySearch(inorder, l, r, preorder[ind[0]]);
ind[0]++;
// Finding on the left subtree.
leafNodesRec(preorder, inorder, l, loc - 1, ind, leaves);
// Finding on the right subtree.
leafNodesRec(preorder, inorder, loc + 1, r, ind, leaves);
}
// Finds leaf nodes from given preorder traversal.
function leafNodes(preorder) {
const n = preorder.length;
const inorder = [...preorder];
inorder.sort((a, b) => a - b);
const leaves = [];
// Point to the index in preorder.
const ind = [0];
// Find the Leaf Nodes.
leafNodesRec(preorder, inorder, 0, n - 1, ind, leaves);
return leaves;
}
// Driver Code
const preorder = [4, 2, 1, 3, 6, 5];
const result = leafNodes(preorder);
console.log(result.join(' '));
[Expected Approach - 2] Using Stack - O(n) Time and O(n) Space
The idea is to use the property of the Binary Search Tree and stack. Traverse the array using two pointer i and j to the array, initially i = 0 and j = 1. Whenever a[i] > a[j], we can say a[j] is left part of a[i], since preorder traversal follows Node -> Left -> Right. So, we push a[i] into the stack.
For those points violating the rule, we start to pop element from the stack till a[i] > top element of the stack and break when it doesn't and print the corresponding jth value.
How does this algorithm work?
Preorder traversal traverse in the order: Node, Left, Right.
And we know the left node of any node in BST is always less than the node. So preorder traversal will first traverse from root to leftmost node. Therefore, preorder will be in decreasing order first. Now, after decreasing order, there may be a node that is greater or which breaks the decreasing order. So, there can be a case like this :
In case 1, 20 is a leaf node whereas in case 2, 20 is not the leaf node.
So, our problem is how to identify if we have to print 20 as a leaf node or not?
This is solved using stack.
While running above algorithm on case 1 and case 2, when i = 2 and j = 3, state of a stack will be the same in both the case:
So, node 65 will pop 20 and 50 from the stack. This is because 65 is the right child of a node which is before 20. This information we store using the found variable. So, 20 is a leaf node.
While in case 2, 40 will not able to pop any element from the stack. Because 40 is the right node of a node which is after 20. So, 20 is not a leaf node.
Note: In the algorithm, we will not be able to check the condition of the leaf node of the rightmost node or rightmost element of the preorder. So, simply print the rightmost node because we know this will always be a leaf node in preorder traversal.
C++
// C++ program to print leaf nodes from the preorder
// traversal of a Binary Search Tree using a stack
#include <iostream>
#include <stack>
#include <vector>
using namespace std;
// Function to find leaf nodes from the
// preorder traversal
vector<int> leafNodes(vector<int>& preorder) {
stack<int> s;
vector<int> leaves;
int n = preorder.size();
// Iterate through the preorder vector
for (int i = 0, j = 1; j < n; i++, j++) {
bool found = false;
// Push current node if it's greater than
// the next node
if (preorder[i] > preorder[j]) {
s.push(preorder[i]);
}
else {
// Pop elements from stack until current node is
// less than or equal to top of stack
while (!s.empty()) {
if (preorder[j] > s.top()) {
s.pop();
found = true;
}
else {
break;
}
}
}
// If a leaf node is found, add it
// to the leaves vector
if (found) {
leaves.push_back(preorder[i]);
}
}
// Since the rightmost element
// is always a leaf node
leaves.push_back(preorder[n - 1]);
return leaves;
}
int main() {
vector<int> preorder = {4, 2, 1, 3, 6, 5};
vector<int> result = leafNodes(preorder);
for (int val : result) {
cout << val << " ";
}
return 0;
}
Java
import java.util.ArrayList;
import java.util.Stack;
import java.util.Arrays;
class GfG {
// Function to find leaf nodes from the
// preorder traversal
static ArrayList<Integer> leafNodes(int[] preorder) {
Stack<Integer> s = new Stack<>();
ArrayList<Integer> leaves = new ArrayList<>();
int n = preorder.length;
// Iterate through the preorder array
for (int i = 0, j = 1; j < n; i++, j++) {
boolean found = false;
// Push current node if it's greater than the next
if (preorder[i] > preorder[j]) {
s.push(preorder[i]);
} else {
// Pop elements from stack until the next value is
// less than or equal to top
while (!s.isEmpty()) {
if (preorder[j] > s.peek()) {
s.pop();
found = true;
} else {
break;
}
}
}
// If a leaf node is found, add it to result
if (found) {
leaves.add(preorder[i]);
}
}
// Add the last element, it's always a leaf in BST preorder
leaves.add(preorder[n - 1]);
return leaves;
}
public static void main(String[] args) {
int[] preorder = {4, 2, 1, 3, 6, 5};
ArrayList<Integer> result = leafNodes(preorder);
for (int val : result) {
System.out.print(val + " ");
}
}
}
Python
# Python program to print leaf nodes from the preorder
# traversal of a Binary Search Tree using a stack
def leafNodes(preorder):
s = []
leaves = []
n = len(preorder)
# Iterate through the preorder list
for i in range(n - 1):
found = False
# Push current node if it's greater
# than the next node
if preorder[i] > preorder[i + 1]:
s.append(preorder[i])
else:
# Pop elements from stack until current node is
# less than or equal to top of stack
while s and preorder[i + 1] > s[-1]:
s.pop()
found = True
# If a leaf node is found, add it to the
# leaves list
if found:
leaves.append(preorder[i])
# Since the rightmost element is always
# a leaf node
leaves.append(preorder[-1])
return leaves
if __name__ == "__main__":
preorder = [4, 2, 1, 3, 6, 5]
result = leafNodes(preorder)
print(" ".join(map(str, result)))
C#
using System;
using System.Collections.Generic;
class GfG {
// Function to find leaf nodes from the preorder traversal
static List<int> leafNodes(int[] preorder) {
Stack<int> s = new Stack<int>();
List<int> leaves = new List<int>();
int n = preorder.Length;
// Iterate through the preorder array
for (int i = 0, j = 1; j < n; i++, j++) {
bool found = false;
// Push current node if it's greater than the next node
if (preorder[i] > preorder[j]) {
s.Push(preorder[i]);
} else {
// Pop elements until next is not greater than top
while (s.Count > 0) {
if (preorder[j] > s.Peek()) {
s.Pop();
found = true;
} else {
break;
}
}
}
if (found) {
leaves.Add(preorder[i]);
}
}
// Last node is always a leaf
leaves.Add(preorder[n - 1]);
return leaves;
}
static void Main(string[] args) {
int[] preorder = {4, 2, 1, 3, 6, 5};
List<int> result = leafNodes(preorder);
foreach (int val in result) {
Console.Write(val + " ");
}
}
}
JavaScript
// JavaScript program to print leaf nodes from the preorder
// traversal of a Binary Search Tree using a stack
function leafNodes(preorder) {
let s = [];
let leaves = [];
let n = preorder.length;
// Iterate through the preorder list
for (let i = 0, j = 1; j < n; i++, j++) {
let found = false;
// Push current node if it's greater
// than the next node
if (preorder[i] > preorder[j]) {
s.push(preorder[i]);
}
else {
// Pop elements from stack until current node is
// less than or equal to top of stack
while (s.length > 0 && preorder[j] > s[s.length - 1]) {
s.pop();
found = true;
}
}
// If a leaf node is found, add it to the leaves array
if (found) {
leaves.push(preorder[i]);
}
}
// Since the rightmost element is always a leaf node
leaves.push(preorder[n - 1]);
return leaves;
}
// Driver Code
let preorder = [4, 2, 1, 3, 6, 5];
let result = leafNodes(preorder);
console.log(result.join(' '));
Related articles:
Similar Reads
Binary Search Tree A Binary Search Tree (BST) is a type of binary tree data structure in which each node contains a unique key and satisfies a specific ordering property:All nodes in the left subtree of a node contain values strictly less than the nodeâs value. All nodes in the right subtree of a node contain values s
4 min read
Introduction to Binary Search Tree Binary Search Tree is a data structure used in computer science for organizing and storing data in a sorted manner. Binary search tree follows all properties of binary tree and for every nodes, its left subtree contains values less than the node and the right subtree contains values greater than the
3 min read
Applications of BST Binary Search Tree (BST) is a data structure that is commonly used to implement efficient searching, insertion, and deletion operations along with maintaining sorted sequence of data. Please remember the following properties of BSTs before moving forward.The left subtree of a node contains only node
3 min read
Applications, Advantages and Disadvantages of Binary Search Tree A Binary Search Tree (BST) is a data structure used to storing data in a sorted manner. Each node in a Binary Search Tree has at most two children, a left child and a right child, with the left child containing values less than the parent node and the right child containing values greater than the p
2 min read
Insertion in Binary Search Tree (BST) Given a BST, the task is to insert a new node in this BST.Example: How to Insert a value in a Binary Search Tree:A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start searching for a key from the root until we hit a leaf node. Once a leaf node is fo
15 min read
Searching in Binary Search Tree (BST) Given a BST, the task is to search a node in this BST. For searching a value in BST, consider it as a sorted array. Now we can easily perform search operation in BST using Binary Search Algorithm. Input: Root of the below BST Output: TrueExplanation: 8 is present in the BST as right child of rootInp
7 min read
Deletion in Binary Search Tree (BST) Given a BST, the task is to delete a node in this BST, which can be broken down into 3 scenarios:Case 1. Delete a Leaf Node in BST Case 2. Delete a Node with Single Child in BSTDeleting a single child node is also simple in BST. Copy the child to the node and delete the node. Case 3. Delete a Node w
10 min read
Binary Search Tree (BST) Traversals â Inorder, Preorder, Post Order Given a Binary Search Tree, The task is to print the elements in inorder, preorder, and postorder traversal of the Binary Search Tree. Input: A Binary Search TreeOutput: Inorder Traversal: 10 20 30 100 150 200 300Preorder Traversal: 100 20 10 30 200 150 300Postorder Traversal: 10 30 20 150 300 200 1
10 min read
Balance a Binary Search Tree Given a BST (Binary Search Tree) that may be unbalanced, the task is to convert it into a balanced BST that has the minimum possible height.Examples: Input: Output: Explanation: The above unbalanced BST is converted to balanced with the minimum possible height.Input: Output: Explanation: The above u
10 min read
Self-Balancing Binary Search Trees Self-Balancing Binary Search Trees are height-balanced binary search trees that automatically keep the height as small as possible when insertion and deletion operations are performed on the tree. The height is typically maintained in order of logN so that all operations take O(logN) time on average
4 min read