LCM of given array elements
Last Updated :
12 Feb, 2025
In this article, we will learn how to find the LCM of given array elements.
Given an array of n numbers, find the LCM of it.
Example:
Input : {1, 2, 8, 3}
Output : 24
LCM of 1, 2, 8 and 3 is 24
Input : {2, 7, 3, 9, 4}
Output : 252
[Naive Approach] Iterative LCM Calculation – O(n * log(min(a, b))) Time and O(n*log(min(a, b))) Space
We know, [Tex]LCM(a, b)=\frac{a*b}{gcd(a, b)} [/Tex]
The above relation only holds for two numbers,
[Tex]LCM(a, b, c)\neq \frac{a*b*c}{gcd(a, b, c)} [/Tex]
The idea here is to extend our relation for more than 2 numbers. Let’s say we have an array arr[] that contains n elements whose LCM needed to be calculated.
The main steps of our algorithm are:
- Initialize ans = arr[0].
- Iterate over all the elements of the array i.e. from i = 1 to i = n-1
At the ith iteration ans = LCM(arr[0], arr[1], …….., arr[i-1]). This can be done easily as LCM(arr[0], arr[1], …., arr[i]) = LCM(ans, arr[i]). Thus at i’th iteration we just have to do ans = LCM(ans, arr[i]) = ans x arr[i] / gcd(ans, arr[i])
Below is the implementation of the above algorithm :
C++
// C++ program to find LCM of n elements
#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
// Utility function to find
// GCD of 'a' and 'b'
int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
// Returns LCM of array elements
ll findlcm(int arr[], int n)
{
// Initialize result
ll ans = arr[0];
// ans contains LCM of arr[0], ..arr[i]
// after i'th iteration,
for (int i = 1; i < n; i++)
ans = (((arr[i] * ans)) /
(gcd(arr[i], ans)));
return ans;
}
// Driver Code
int main()
{
int arr[] = { 2, 7, 3, 9, 4 };
int n = sizeof(arr) / sizeof(arr[0]);
printf("%lld", findlcm(arr, n));
return 0;
}
Java
// Java Program to find LCM of n elements
import java.io.*;
public class GFG {
public static long lcm_of_array_elements(int[] element_array)
{
long lcm_of_array_elements = 1;
int divisor = 2;
while (true) {
int counter = 0;
boolean divisible = false;
for (int i = 0; i < element_array.length; i++) {
// lcm_of_array_elements (n1, n2, ... 0) = 0.
// For negative number we convert into
// positive and calculate lcm_of_array_elements.
if (element_array[i] == 0) {
return 0;
}
else if (element_array[i] < 0) {
element_array[i] = element_array[i] * (-1);
}
if (element_array[i] == 1) {
counter++;
}
// Divide element_array by devisor if complete
// division i.e. without remainder then replace
// number with quotient; used for find next factor
if (element_array[i] % divisor == 0) {
divisible = true;
element_array[i] = element_array[i] / divisor;
}
}
// If divisor able to completely divide any number
// from array multiply with lcm_of_array_elements
// and store into lcm_of_array_elements and continue
// to same divisor for next factor finding.
// else increment divisor
if (divisible) {
lcm_of_array_elements = lcm_of_array_elements * divisor;
}
else {
divisor++;
}
// Check if all element_array is 1 indicate
// we found all factors and terminate while loop.
if (counter == element_array.length) {
return lcm_of_array_elements;
}
}
}
// Driver Code
public static void main(String[] args)
{
int[] element_array = { 2, 7, 3, 9, 4 };
System.out.println(lcm_of_array_elements(element_array));
}
}
// Code contributed by Mohit Gupta_OMG
Python
# Python Program to find LCM of n elements
def find_lcm(num1, num2):
if(num1>num2):
num = num1
den = num2
else:
num = num2
den = num1
rem = num % den
while(rem != 0):
num = den
den = rem
rem = num % den
gcd = den
lcm = int(int(num1 * num2)/int(gcd))
return lcm
l = [2, 7, 3, 9, 4]
num1 = l[0]
num2 = l[1]
lcm = find_lcm(num1, num2)
for i in range(2, len(l)):
lcm = find_lcm(lcm, l[i])
print(lcm)
# Code contributed by Mohit Gupta_OMG
C#
// C# Program to find LCM of n elements
using System;
public class GFG {
public static long lcm_of_array_elements(int[] element_array)
{
long lcm_of_array_elements = 1;
int divisor = 2;
while (true) {
int counter = 0;
bool divisible = false;
for (int i = 0; i < element_array.Length; i++) {
// lcm_of_array_elements (n1, n2, ... 0) = 0.
// For negative number we convert into
// positive and calculate lcm_of_array_elements.
if (element_array[i] == 0) {
return 0;
}
else if (element_array[i] < 0) {
element_array[i] = element_array[i] * (-1);
}
if (element_array[i] == 1) {
counter++;
}
// Divide element_array by devisor if complete
// division i.e. without remainder then replace
// number with quotient; used for find next factor
if (element_array[i] % divisor == 0) {
divisible = true;
element_array[i] = element_array[i] / divisor;
}
}
// If divisor able to completely divide any number
// from array multiply with lcm_of_array_elements
// and store into lcm_of_array_elements and continue
// to same divisor for next factor finding.
// else increment divisor
if (divisible) {
lcm_of_array_elements = lcm_of_array_elements * divisor;
}
else {
divisor++;
}
// Check if all element_array is 1 indicate
// we found all factors and terminate while loop.
if (counter == element_array.Length) {
return lcm_of_array_elements;
}
}
}
// Driver Code
public static void Main()
{
int[] element_array = { 2, 7, 3, 9, 4 };
Console.Write(lcm_of_array_elements(element_array));
}
}
// This Code is contributed by nitin mittal
JavaScript
<script>
// Javascript program to find LCM of n elements
// Utility function to find
// GCD of 'a' and 'b'
function gcd(a, b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
// Returns LCM of array elements
function findlcm(arr, n)
{
// Initialize result
let ans = arr[0];
// ans contains LCM of arr[0], ..arr[i]
// after i'th iteration,
for (let i = 1; i < n; i++)
ans = (((arr[i] * ans)) /
(gcd(arr[i], ans)));
return ans;
}
// Driver Code
let arr = [ 2, 7, 3, 9, 4 ];
let n = arr.length;
document.write(findlcm(arr, n));
// This code is contributed by Mayank Tyagi
</script>
PHP
<?php
// PHP program to find LCM of n elements
// Utility function to find
// GCD of 'a' and 'b'
function gcd($a, $b)
{
if ($b == 0)
return $a;
return gcd($b, $a % $b);
}
// Returns LCM of array elements
function findlcm($arr, $n)
{
// Initialize result
$ans = $arr[0];
// ans contains LCM of
// arr[0], ..arr[i]
// after i'th iteration,
for ($i = 1; $i < $n; $i++)
$ans = ((($arr[$i] * $ans)) /
(gcd($arr[$i], $ans)));
return $ans;
}
// Driver Code
$arr = array(2, 7, 3, 9, 4 );
$n = sizeof($arr);
echo findlcm($arr, $n);
// This code is contributed by ChitraNayal
?>
Time Complexity: O(n * log(min(a, b))), where n represents the size of the given array.
Auxiliary Space: O(n*log(min(a, b))) due to recursive stack space.
[Alternate Implementation] Recursive LCM Calculation – O(n * log(max(a, b)) Time and O(n) Space
Below is the implementation of the above algorithm Recursively :
C++
#include <bits/stdc++.h>
using namespace std;
//recursive implementation
int LcmOfArray(vector<int> arr, int idx){
// lcm(a,b) = (a*b/gcd(a,b))
if (idx == arr.size()-1){
return arr[idx];
}
int a = arr[idx];
int b = LcmOfArray(arr, idx+1);
return (a*b/__gcd(a,b)); // __gcd(a,b) is inbuilt library function
}
int main() {
vector<int> arr = {1,2,8,3};
cout << LcmOfArray(arr, 0) << "\n";
arr = {2,7,3,9,4};
cout << LcmOfArray(arr,0) << "\n";
return 0;
}
Java
import java.util.*;
import java.io.*;
class GFG
{
// Recursive function to return gcd of a and b
static int __gcd(int a, int b)
{
return b == 0? a:__gcd(b, a % b);
}
// recursive implementation
static int LcmOfArray(int[] arr, int idx)
{
// lcm(a,b) = (a*b/gcd(a,b))
if (idx == arr.length - 1){
return arr[idx];
}
int a = arr[idx];
int b = LcmOfArray(arr, idx+1);
return (a*b/__gcd(a,b)); //
}
public static void main(String[] args)
{
int[] arr = {1,2,8,3};
System.out.print(LcmOfArray(arr, 0)+ "\n");
int[] arr1 = {2,7,3,9,4};
System.out.print(LcmOfArray(arr1,0)+ "\n");
}
}
// This code is contributed by gauravrajput1
Python
def __gcd(a, b):
if (a == 0):
return b
return __gcd(b % a, a)
# recursive implementation
def LcmOfArray(arr, idx):
# lcm(a,b) = (a*b/gcd(a,b))
if (idx == len(arr)-1):
return arr[idx]
a = arr[idx]
b = LcmOfArray(arr, idx+1)
return int(a*b/__gcd(a,b)) # __gcd(a,b) is inbuilt library function
arr = [1,2,8,3]
print(LcmOfArray(arr, 0))
arr = [2,7,3,9,4]
print(LcmOfArray(arr,0))
# This code is contributed by divyeshrabadiya07.
C#
using System;
class GFG {
// Function to return
// gcd of a and b
static int __gcd(int a, int b)
{
if (a == 0)
return b;
return __gcd(b % a, a);
}
//recursive implementation
static int LcmOfArray(int[] arr, int idx){
// lcm(a,b) = (a*b/gcd(a,b))
if (idx == arr.Length-1){
return arr[idx];
}
int a = arr[idx];
int b = LcmOfArray(arr, idx+1);
return (a*b/__gcd(a,b)); // __gcd(a,b) is inbuilt library function
}
static void Main() {
int[] arr = {1,2,8,3};
Console.WriteLine(LcmOfArray(arr, 0));
int[] arr1 = {2,7,3,9,4};
Console.WriteLine(LcmOfArray(arr1,0));
}
}
JavaScript
<script>
// Function to return
// gcd of a and b
function __gcd(a, b)
{
if (a == 0)
return b;
return __gcd(b % a, a);
}
//recursive implementation
function LcmOfArray(arr, idx){
// lcm(a,b) = (a*b/gcd(a,b))
if (idx == arr.length-1){
return arr[idx];
}
let a = arr[idx];
let b = LcmOfArray(arr, idx+1);
return (a*b/__gcd(a,b)); // __gcd(a,b) is inbuilt library function
}
let arr = [1,2,8,3];
document.write(LcmOfArray(arr, 0) + "</br>");
arr = [2,7,3,9,4];
document.write(LcmOfArray(arr,0));
// This code is contributed by decode2207.
</script>
Time Complexity: O(n * log(max(a, b)), where n represents the size of the given array.
Auxiliary Space: O(n) due to recursive stack space.
[Efficient Approach] Using Euclidean Algorithm for GCD – O(n log n) Time and O(1) Space
The function starts by initializing the lcm variable to the first element in the array. It then iterates through the rest of the array, and for each element, it calculates the GCD of the current lcm and the element using the Euclidean algorithm. The calculated GCD is stored in the gcd variable.
Once the GCD is calculated, the LCM is updated by multiplying the current lcm with the element and dividing by the GCD. This is done using the formula LCM(a,b) = (a * b) / GCD(a,b).
C++
#include <iostream>
#include <vector>
using namespace std;
int gcd(int num1, int num2)
{
if (num2 == 0)
return num1;
return gcd(num2, num1 % num2);
}
int lcm_of_array(vector<int> arr)
{
int lcm = arr[0];
for (int i = 1; i < arr.size(); i++) {
int num1 = lcm;
int num2 = arr[i];
int gcd_val = gcd(num1, num2);
lcm = (lcm * arr[i]) / gcd_val;
}
return lcm;
}
int main()
{
vector<int> arr1 = { 1, 2, 8, 3 };
vector<int> arr2 = { 2, 7, 3, 9, 4 };
cout << lcm_of_array(arr1) << endl; // Output: 24
cout << lcm_of_array(arr2) << endl; // Output: 252
return 0;
}
Java
import java.util.*;
public class Main {
public static int gcd(int num1, int num2)
{
if (num2 == 0)
return num1;
return gcd(num2, num1 % num2);
}
public static int lcm_of_array(ArrayList<Integer> arr)
{
int lcm = arr.get(0);
for (int i = 1; i < arr.size(); i++) {
int num1 = lcm;
int num2 = arr.get(i);
int gcd_val = gcd(num1, num2);
lcm = (lcm * arr.get(i)) / gcd_val;
}
return lcm;
}
public static void main(String[] args)
{
ArrayList<Integer> arr1
= new ArrayList<>(Arrays.asList(1, 2, 8, 3));
ArrayList<Integer> arr2
= new ArrayList<>(Arrays.asList(2, 7, 3, 9, 4));
System.out.println(
lcm_of_array(arr1)); // Output: 24
System.out.println(
lcm_of_array(arr2)); // Output: 252
}
}
Python
def lcm_of_array(arr):
lcm = arr[0]
for i in range(1, len(arr)):
num1 = lcm
num2 = arr[i]
gcd = 1
# Finding GCD using Euclidean algorithm
while num2 != 0:
temp = num2
num2 = num1 % num2
num1 = temp
gcd = num1
lcm = (lcm * arr[i]) // gcd
return lcm
# Example usage
arr1 = [1, 2, 8, 3]
arr2 = [2, 7, 3, 9, 4]
print(lcm_of_array(arr1)) # Output: 24
print(lcm_of_array(arr2)) # Output: 252
C#
using System;
using System.Collections.Generic;
class Program {
static int Gcd(int num1, int num2)
{
if (num2 == 0)
return num1;
return Gcd(num2, num1 % num2);
}
static int LcmOfArray(List<int> arr)
{
int lcm = arr[0];
for (int i = 1; i < arr.Count; i++) {
int num1 = lcm;
int num2 = arr[i];
int gcdVal = Gcd(num1, num2);
lcm = (lcm * arr[i]) / gcdVal;
}
return lcm;
}
static void Main()
{
List<int> arr1 = new List<int>{ 1, 2, 8, 3 };
List<int> arr2 = new List<int>{ 2, 7, 3, 9, 4 };
Console.WriteLine(LcmOfArray(arr1)); // Output: 24
Console.WriteLine(LcmOfArray(arr2)); // Output: 252
}
}
JavaScript
function gcd(num1, num2) {
if (num2 == 0)
return num1;
return gcd(num2, num1 % num2);
}
function lcm_of_array(arr) {
let lcm = arr[0];
for (let i = 1; i < arr.length; i++) {
let num1 = lcm;
let num2 = arr[i];
let gcd_val = gcd(num1, num2);
lcm = (lcm * arr[i]) / gcd_val;
}
return lcm;
}
let arr1 = [1, 2, 8, 3];
let arr2 = [2, 7, 3, 9, 4];
console.log(lcm_of_array(arr1)); // Output: 24
console.log(lcm_of_array(arr2)); // Output: 252
The time complexity of the above code is O(n log n), where n is the length of the input array. This is because for each element of the array, we need to find the GCD, which has a time complexity of O(log n) using the Euclidean algorithm. Since we are iterating over n elements of the array, the overall time complexity becomes O(n log n).
The auxiliary space used by this algorithm is O(1), as only a constant number of variables are used throughout the algorithm, regardless of the size of the input array.
[Expected Approach] Using Library Methods
This code uses the reduce function from the functools library and the gcd function from the math library to find the LCM of a list of numbers. The reduce function applies the lambda function to the elements of the list, cumulatively reducing the list to a single value (the LCM in this case). The lambda function calculates the LCM of two numbers using the same approach as the previous implementation. The final LCM is returned as the result.
C++
#include <iostream>
#include <vector>
#include <numeric> // for std::accumulate
int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
int lcm(std::vector<int> numbers)
{
return std::accumulate(numbers.begin(), numbers.end(), 1,
[](int x, int y) { return (x * y) / gcd(x, y); });
}
int main()
{
std::vector<int> numbers = {2, 3, 4, 5};
int LCM = lcm(numbers);
std::cout << "LCM of " << numbers.size() << " numbers is " << LCM << std::endl;
return 0;
}
Java
// Java code to find LCM of given numbers using reduce()
// function
import java.util.*;
import java.util.function.*;
import java.util.stream.*;
class Main {
static int lcm(List<Integer> numbers)
{
return numbers.stream().reduce(
1, (x, y) -> (x * y) / gcd(x, y));
}
static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
public static void main(String[] args)
{
List<Integer> numbers = Arrays.asList(2, 3, 4, 5);
int LCM = lcm(numbers);
System.out.println("LCM of " + numbers + " is "
+ LCM);
}
}
Python
from functools import reduce
import math
def lcm(numbers):
return reduce(lambda x, y: x * y // math.gcd(x, y), numbers, 1)
numbers = [2, 3, 4, 5]
print("LCM of", numbers, "is", lcm(numbers))
C#
using System;
using System.Linq;
class Program
{
static int Lcm(int[] numbers)
{
return numbers.Aggregate((x, y) => x * y / Gcd(x, y));
}
static int Gcd(int a, int b)
{
if (b == 0)
return a;
return Gcd(b, a % b);
}
static void Main()
{
int[] numbers = { 2, 3, 4, 5 };
int lcm = Lcm(numbers);
Console.WriteLine("LCM of {0} is {1}", string.Join(", ", numbers), lcm);
}
}
JavaScript
function lcm(numbers) {
function gcd(a, b) {
// If the second argument is 0, return the first argument (base case)
if (b === 0) {
return a;
}
// Otherwise, recursively call gcd with arguments b and the remainder of a divided by b
return gcd(b, a % b);
}
// Reduce the array of numbers by multiplying each number together and dividing by their gcd
// This finds the Least Common Multiple (LCM) of the numbers in the array
return numbers.reduce((a, b) => a * b / gcd(a, b));
}
// array
let numbers = [2, 3, 4, 5];
// Call the lcm function
let lcmValue = lcm(numbers);
// Print the Output
console.log(`LCM of ${numbers.join(', ')} is ${lcmValue}`);
OutputLCM of 4 numbers is 60
The time complexity of the program is O(n log n)
The auxiliary space used by the program is O(1)
Related Article :
Similar Reads
GCD (Greatest Common Divisor) Practice Problems for Competitive Programming
GCD (Greatest Common Divisor) or HCF (Highest Common Factor) of two numbers is the largest positive integer that divides both of the numbers. Fastest Way to Compute GCDThe fastest way to find the Greatest Common Divisor (GCD) of two numbers is by using the Euclidean algorithm. The Euclidean algorith
4 min read
Program to Find GCD or HCF of Two Numbers
Given two numbers a and b, the task is to find the GCD of the two numbers. Note: The GCD (Greatest Common Divisor) or HCF (Highest Common Factor) of two numbers is the largest number that divides both of them. Examples: Input: a = 20, b = 28Output: 4Explanation: The factors of 20 are 1, 2, 4, 5, 10
15+ min read
Check if two numbers are co-prime or not
Two numbers A and B are said to be Co-Prime or mutually prime if the Greatest Common Divisor of them is 1. You have been given two numbers A and B, find if they are Co-prime or not.Examples : Input : 2 3Output : Co-PrimeInput : 4 8Output : Not Co-Prime The idea is simple, we find GCD of two numbers
5 min read
GCD of more than two (or array) numbers
Given an array arr[] of non-negative numbers, the task is to find GCD of all the array elements. In a previous post we find GCD of two number. Examples: Input: arr[] = [1, 2, 3]Output: 1Input: arr[] = [2, 4, 6, 8]Output: 2 Using Recursive GCDThe GCD of three or more numbers equals the product of the
11 min read
Program to find LCM of two numbers
LCM of two numbers is the smallest number which can be divided by both numbers. Input : a = 12, b = 18Output : 3636 is the smallest number divisible by both 12 and 18 Input : a = 5, b = 11Output : 5555 is the smallest number divisible by both 5 and 11 [Naive Approach] Using Conditional Loop This app
8 min read
LCM of given array elements
In this article, we will learn how to find the LCM of given array elements. Given an array of n numbers, find the LCM of it. Example: Input : {1, 2, 8, 3}Output : 24LCM of 1, 2, 8 and 3 is 24Input : {2, 7, 3, 9, 4}Output : 252 Table of Content [Naive Approach] Iterative LCM Calculation - O(n * log(m
15 min read
Find the other number when LCM and HCF given
Given a number A and L.C.M and H.C.F. The task is to determine the other number B. Examples: Input: A = 10, Lcm = 10, Hcf = 50. Output: B = 50 Input: A = 5, Lcm = 25, Hcf = 4. Output: B = 20 Formula: A * B = LCM * HCF B = (LCM * HCF)/AExample : A = 15, B = 12 HCF = 3, LCM = 60 We can see that 3 * 60
4 min read
Minimum insertions to make a Co-prime array
Given an array of N elements, find the minimum number of insertions to convert the given array into a co-prime array. Print the resultant array also.Co-prime Array : An array in which every pair of adjacent elements are co-primes. i.e, [Tex]gcd(a, b) = 1 [/Tex]. Examples : Input : A[] = {2, 7, 28}Ou
7 min read
Find the minimum possible health of the winning player
Given an array health[] where health[i] is the health of the ith player in a game, any player can attack any other player in the game. The health of the player being attacked will be reduced by the amount of health the attacking player has. The task is to find the minimum possible health of the winn
4 min read
Minimum squares to evenly cut a rectangle
Given a rectangular sheet of length l and width w. we need to divide this sheet into square sheets such that the number of square sheets should be as minimum as possible.Examples: Input :l= 4 w=6 Output :6 We can form squares with side of 1 unit, But the number of squares will be 24, this is not min
4 min read