// C Program to Solve Knight’s Tour using Warnsdorff’s Rule
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define N 8
// Move pattern on basis of the change of
// x coordinates and y coordinates respectively
static int cx[N] = { 1, 1, 2, 2, -1, -1, -2, -2 };
static int cy[N] = { 2, -2, 1, -1, 2, -2, 1, -1 };
// function restricts the knight to remain within
// the 8x8 chessboard
bool limits(int x, int y)
{
return ((x >= 0 && y >= 0) && (x < N && y < N));
}
/* Checks whether a square is valid and empty or not */
bool isempty(int a[], int x, int y)
{
return (limits(x, y)) && (a[y * N + x] < 0);
}
/* Returns the number of empty squares adjacent to (x, y) */
int getDegree(int a[], int x, int y)
{
int count = 0;
for (int i = 0; i < N; ++i)
if (isempty(a, (x + cx[i]), (y + cy[i])))
count++;
return count;
}
// Picks next point using Warnsdorff's heuristic.
// Returns false if it is not possible to pick next point.
bool nextMove(int a[], int* x, int* y)
{
int min_deg_idx = -1, c, min_deg = (N + 1), nx, ny;
// Try all N adjacent of (*x, *y) starting from a random
// adjacent. Find the adjacent with minimum degree.
int start = rand() % N;
for (int count = 0; count < N; ++count) {
int i = (start + count) % N;
nx = *x + cx[i];
ny = *y + cy[i];
if ((isempty(a, nx, ny))
&& (c = getDegree(a, nx, ny)) < min_deg) {
min_deg_idx = i;
min_deg = c;
}
}
// If we could not find a next cell
if (min_deg_idx == -1)
return false;
// Store coordinates of next point
nx = *x + cx[min_deg_idx];
ny = *y + cy[min_deg_idx];
// Mark next move
a[ny * N + nx] = a[(*y) * N + (*x)] + 1;
// Update next point
*x = nx;
*y = ny;
return true;
}
/* displays the chessboard with all the legal knight's moves
*/
void print(int a[])
{
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j)
printf("%2d\t", a[j * N + i]);
printf("\n");
}
}
/* checks its neighbouring squares */
/* If the knight ends on a square that is one knight's move
* from the beginning square, then tour is closed */
bool neighbour(int x, int y, int xx, int yy)
{
for (int i = 0; i < N; ++i)
if (((x + cx[i]) == xx) && ((y + cy[i]) == yy))
return true;
return false;
}
/* Generates the legal moves using Warnsdorff's heuristics.
* Returns false if not possible */
bool findClosedTour()
{
// Filling up the chessboard matrix with -1's
int a[N * N];
for (int i = 0; i < N * N; ++i)
a[i] = -1;
// Random initial position
int sx = rand() % N;
int sy = rand() % N;
// Current points are same as initial points
int x = sx, y = sy;
a[y * N + x] = 1; // Mark first move.
// Keep picking next points using Warnsdorff's heuristic
for (int i = 0; i < N * N - 1; ++i)
if (nextMove(a, &x, &y) == 0)
return false;
// Check if tour is closed (Can end at starting point)
if (!neighbour(x, y, sx, sy))
return false;
print(a);
return true;
}
int main()
{
// To make sure that different random initial positions
// are picked.
srand(time(NULL));
// While we don't get a solution
while (!findClosedTour()) {
;
}
return 0;
}