k-th smallest absolute difference of two elements in an array
Last Updated :
21 Aug, 2022
We are given an array of size n containing positive integers. The absolute difference between values at indices i and j is |a[i] - a[j]|. There are n*(n-1)/2 such pairs and we are asked to print the kth (1 <= k <= n*(n-1)/2) as the smallest absolute difference among all these pairs.
Examples:
Input : a[] = {1, 2, 3, 4}
k = 3
Output : 1
The possible absolute differences are :
{1, 2, 3, 1, 2, 1}.
The 3rd smallest value among these is 1.
Input : n = 2
a[] = {10, 10}
k = 1
Output : 0
Naive Method is to find all the n*(n-1)/2 possible absolute differences in O(n^2) and store them in an array. Then sort this array and print the kth minimum value from this array. This will take time O(n^2 + n^2 * log(n^2)) = O(n^2 + 2*n^2*log(n)).
The naive method won't be efficient for large values of n, say n = 10^5.
An Efficient Solution is based on Binary Search.
1) Sort the given array a[].
2) We can easily find the least possible absolute
difference in O(n) after sorting. The largest
possible difference will be a[n-1] - a[0] after
sorting the array. Let low = minimum_difference
and high = maximum_difference.
3) while low < high:
4) mid = (low + high)/2
5) if ((number of pairs with absolute difference
<= mid) < k):
6) low = mid + 1
7) else:
8) high = mid
9) return low
We need a function that will tell us the number of pairs with a difference <= mid efficiently. Since our array is sorted, this part can be done like this:
1) result = 0
2) for i = 0 to n-1:
3) result = result + (upper_bound(a+i, a+n, a[i] + mid) - (a+i+1))
4) return result
Here upper_bound is a variant of binary search that returns a pointer to the first element from a[i] to a[n-1] which is greater than a[i] + mid. Let the pointer returned be j. Then a[i] + mid < a[j]. Thus, subtracting (a+i+1) from this will give us the number of values whose difference with a[i] is <= mid. We sum this up for all indices from 0 to n-1 and get the answer for the current mid.
Flowchart is as follows:
Flowchart
Implementation:
C++
// C++ program to find k-th absolute difference
// between two elements
#include<bits/stdc++.h>
using namespace std;
// returns number of pairs with absolute difference
// less than or equal to mid.
int countPairs(int *a, int n, int mid)
{
int res = 0;
for (int i = 0; i < n; ++i)
// Upper bound returns pointer to position
// of next higher number than a[i]+mid in
// a[i..n-1]. We subtract (a + i + 1) from
// this position to count
res += upper_bound(a+i, a+n, a[i] + mid) -
(a + i + 1);
return res;
}
// Returns k-th absolute difference
int kthDiff(int a[], int n, int k)
{
// Sort array
sort(a, a+n);
// Minimum absolute difference
int low = a[1] - a[0];
for (int i = 1; i <= n-2; ++i)
low = min(low, a[i+1] - a[i]);
// Maximum absolute difference
int high = a[n-1] - a[0];
// Do binary search for k-th absolute difference
while (low < high)
{
int mid = (low+high)>>1;
if (countPairs(a, n, mid) < k)
low = mid + 1;
else
high = mid;
}
return low;
}
// Driver code
int main()
{
int k = 3;
int a[] = {1, 2, 3, 4};
int n = sizeof(a)/sizeof(a[0]);
cout << kthDiff(a, n, k);
return 0;
}
Java
// Java program to find k-th absolute difference
// between two elements
import java.util.Scanner;
import java.util.Arrays;
class GFG
{
// returns number of pairs with absolute
// difference less than or equal to mid
static int countPairs(int[] a, int n, int mid)
{
int res = 0, value;
for(int i = 0; i < n; i++)
{
// Upper bound returns pointer to position
// of next higher number than a[i]+mid in
// a[i..n-1]. We subtract (ub + i + 1) from
// this position to count
if(a[i]+mid>a[n-1])
res+=(n-(i+1));
else
{
int ub = upperbound(a, n, a[i]+mid);
res += (ub- (i+1));
}
}
return res;
}
// returns the upper bound
static int upperbound(int a[], int n, int value)
{
int low = 0;
int high = n;
while(low < high)
{
final int mid = (low + high)/2;
if(value >= a[mid])
low = mid + 1;
else
high = mid;
}
return low;
}
// Returns k-th absolute difference
static int kthDiff(int a[], int n, int k)
{
// Sort array
Arrays.sort(a);
// Minimum absolute difference
int low = a[1] - a[0];
for (int i = 1; i <= n-2; ++i)
low = Math.min(low, a[i+1] - a[i]);
// Maximum absolute difference
int high = a[n-1] - a[0];
// Do binary search for k-th absolute difference
while (low < high)
{
int mid = (low + high) >> 1;
if (countPairs(a, n, mid) < k)
low = mid + 1;
else
high = mid;
}
return low;
}
// Driver function to check the above functions
public static void main(String args[])
{
Scanner s = new Scanner(System.in);
int k = 3;
int a[] = {1,2,3,4};
int n = a.length;
System.out.println(kthDiff(a, n, k));
}
}
// This code is contributed by nishkarsh146
Python3
# Python3 program to find
# k-th absolute difference
# between two elements
from bisect import bisect as upper_bound
# returns number of pairs with
# absolute difference less than
# or equal to mid.
def countPairs(a, n, mid):
res = 0
for i in range(n):
# Upper bound returns pointer to position
# of next higher number than a[i]+mid in
# a[i..n-1]. We subtract (a + i + 1) from
# this position to count
res += upper_bound(a, a[i] + mid)
return res
# Returns k-th absolute difference
def kthDiff(a, n, k):
# Sort array
a = sorted(a)
# Minimum absolute difference
low = a[1] - a[0]
for i in range(1, n - 1):
low = min(low, a[i + 1] - a[i])
# Maximum absolute difference
high = a[n - 1] - a[0]
# Do binary search for k-th absolute difference
while (low < high):
mid = (low + high) >> 1
if (countPairs(a, n, mid) < k):
low = mid + 1
else:
high = mid
return low
# Driver code
k = 3
a = [1, 2, 3, 4]
n = len(a)
print(kthDiff(a, n, k))
# This code is contributed by Mohit Kumar
C#
// C# program to find k-th
// absolute difference
// between two elements
using System;
class GFG{
// returns number of pairs
// with absolute difference
// less than or equal to mid
static int countPairs(int[] a,
int n,
int mid)
{
int res = 0;
for(int i = 0; i < n; i++)
{
// Upper bound returns pointer
// to position of next higher
// number than a[i]+mid in
// a[i..n-1]. We subtract
// (ub + i + 1) from
// this position to count
int ub = upperbound(a, n,
a[i] + mid);
res += (ub - (i));
}
return res;
}
// returns the upper bound
static int upperbound(int []a,
int n,
int value)
{
int low = 0;
int high = n;
while(low < high)
{
int mid = (low + high)/2;
if(value >= a[mid])
low = mid + 1;
else
high = mid;
}
return low;
}
// Returns k-th absolute
// difference
static int kthDiff(int []a,
int n, int k)
{
// Sort array
Array.Sort(a);
// Minimum absolute
// difference
int low = a[1] - a[0];
for (int i = 1; i <= n - 2; ++i)
low = Math.Min(low, a[i + 1] -
a[i]);
// Maximum absolute
// difference
int high = a[n - 1] - a[0];
// Do binary search for
// k-th absolute difference
while (low < high)
{
int mid = (low + high) >> 1;
if (countPairs(a, n, mid) < k)
low = mid + 1;
else
high = mid;
}
return low;
}
// Driver code
public static void Main(String []args)
{
int k = 3;
int []a = {1, 2, 3, 4};
int n = a.Length;
Console.WriteLine(kthDiff(a, n, k));
}
}
// This code is contributed by gauravrajput1
JavaScript
<script>
// JavaScript program to find k-th
// absolute difference
// between two elements
// returns number of pairs
// with absolute difference
// less than or equal to mid
function countPairs(a, n, mid) {
let res = 0;
for (let i = 0; i < n; i++) {
// Upper bound returns pointer
// to position of next higher
// number than a[i]+mid in
// a[i..n-1]. We subtract
// (ub + i + 1) from
// this position to count
let ub = upperbound(a, n,
a[i] + mid);
res += (ub - (i));
}
return res;
}
// returns the upper bound
function upperbound(a, n, value) {
let low = 0;
let high = n;
while (low < high) {
let mid = (low + high) / 2;
if (value >= a[mid])
low = mid + 1;
else
high = mid;
}
return low;
}
// Returns k-th absolute
// difference
function kthDiff(a, n, k) {
// Sort array
a.sort((a, b) => a - b);
// Minimum absolute
// difference
let low = a[1] - a[0];
for (let i = 1; i <= n - 2; ++i)
low = Math.min(low, a[i + 1] -
a[i]);
// Maximum absolute
// difference
let high = a[n - 1] - a[0];
// Do binary search for
// k-th absolute difference
while (low < high) {
let mid = (low + high) >> 1;
if (countPairs(a, n, mid) < k)
low = mid + 1;
else
high = mid;
}
return low;
}
// Driver code
let k = 3;
let a = [1, 2, 3, 4];
let n = a.length;
document.write(kthDiff(a, n, k));
// This code is contributed by gfgking
</script>
Time Complexity: O(nlogn)
Auxiliary Space: O(1)
Suppose, the maximum element in the array is, and the minimum element is a minimum element in the array is min . Then time taken for the binary_search will be , and the time taken for the upper_bound function will be O(log(n))
So, the time complexity of the algorithm is O( n*log(n) + log(max-min)*n*log(n)) . Sorting takes O(n*log(n)) . After that the main binary search over low and high takes O(log(max-min)*n*log(n)) time because each call to the function countPairs takes time O(n*log(n)) .
So the Overall time complexity would be O(n*log(n)*log(max-min))
Similar Reads
Array element with minimum sum of absolute differences | Set 2 Given an array arr[] consisting of N positive integers, the task is to find an array element X such that sum of its absolute differences with every array element is minimum. Examples: Input: arr[] = {1, 2, 3, 4, 5}Output: 3Explanation: For element arr[0](= 1): |(1 - 1)| + |(2 - 1)| + |(3 - 1)| + |(4
7 min read
Maximize sum of absolute difference between adjacent elements in Array with sum K Given two integers N and K, the task is to maximize the sum of absolute differences between adjacent elements of an array of length N and sum K. Examples: Input: N = 5, K = 10 Output: 20 Explanation: The array arr[] with sum 10 can be {0, 5, 0, 5, 0}, maximizing the sum of absolute difference of adj
4 min read
Sum of minimum absolute differences in an array Given an array of n distinct integers. The task is to find the sum of minimum absolute difference of each array element. For an element arr[i] present at index i in the array, its minimum absolute difference is calculated as: Min absolute difference (arr[i]) = min(abs(arr[i] - arr[j])), where 0 <
7 min read
Find K elements whose absolute difference with median of array is maximum Given an array arr[] and an integer K, the task is to find the K elements of the array whose absolute difference with median of array is maximum. Note: If two elements have equal difference then the maximum element is taken into consideration. Examples: Input : arr[] = {1, 2, 3, 4, 5}, k = 3 Output
12 min read
Absolute Difference of all pairwise consecutive elements in an array Given an array of integers of N elements. The task is to print the absolute difference of all of the pairwise consecutive elements. Pairwise consecutive pairs of an array of size N are (a[i], a[i+1]) for all i ranging from 0 to N-2 Examples: Input: arr[] = {8, 5, 4, 3, 15, 20}Output: 3, 1, 1, 12, 5I
4 min read