Java Program for Maximum Product Subarray
Last Updated :
29 Nov, 2022
Given an array that contains both positive and negative integers, find the product of the maximum product subarray. Expected Time complexity is O(n) and only O(1) extra space can be used.
Examples:
Input: arr[] = {6, -3, -10, 0, 2}
Output: 180 // The subarray is {6, -3, -10}
Input: arr[] = {-1, -3, -10, 0, 60}
Output: 60 // The subarray is {60}
Input: arr[] = {-2, -40, 0, -2, -3}
Output: 80 // The subarray is {-2, -40}
Naive Solution:
The idea is to traverse over every contiguous subarrays, find the product of each of these subarrays and return the maximum product from these results.
Below is the implementation of the above approach.
Java
// Java program to find maximum product subarray
import java.io.*;
class GFG {
/* Returns the product of max product subarray.*/
static int maxSubarrayProduct(int arr[])
{
// Initializing result
int result = arr[0];
int n = arr.length;
for (int i = 0; i < n; i++)
{
int mul = arr[i];
// traversing in current subarray
for (int j = i + 1; j < n; j++)
{
// updating result every time
// to keep an eye over the
// maximum product
result = Math.max(result, mul);
mul *= arr[j];
}
// updating the result for (n-1)th index.
result = Math.max(result, mul);
}
return result;
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 1, -2, -3, 0, 7, -8, -2 };
System.out.println("Maximum Sub array product is "
+ maxSubarrayProduct(arr));
}
}
// This code is contributed by yashbeersingh42
Output:
Maximum Sub array product is 112
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Solution:
The following solution assumes that the given input array always has a positive output. The solution works for all cases mentioned above. It doesn't work for arrays like {0, 0, -20, 0}, {0, 0, 0}.. etc. The solution can be easily modified to handle this case.
It is similar to Largest Sum Contiguous Subarray problem. The only thing to note here is, maximum product can also be obtained by minimum (negative) product ending with the previous element multiplied by this element. For example, in array {12, 2, -3, -5, -6, -2}, when we are at element -2, the maximum product is multiplication of, minimum product ending with -6 and -2.
Java
// Java program to find maximum product subarray
import java.io.*;
class ProductSubarray {
// Utility functions to get
// minimum of two integers
static int min(int x, int y) {
return x < y ? x : y;
}
// Utility functions to get
// maximum of two integers
static int max(int x, int y) {
return x > y ? x : y;
}
/* Returns the product of
max product subarray.
Assumes that the given
array always has a subarray
with product more than 1 */
static int maxSubarrayProduct(int arr[])
{
int n = arr.length;
// max positive product
// ending at the current
// position
int max_ending_here = 1;
// min negative product
// ending at the current
// position
int min_ending_here = 1;
// Initialize overall max product
int max_so_far = 0;
int flag = 0;
/* Traverse through the array. Following
values are maintained after the ith iteration:
max_ending_here is always 1 or some positive product
ending with arr[i]
min_ending_here is always 1 or some negative product
ending with arr[i] */
for (int i = 0; i < n; i++)
{
/* If this element is positive, update
max_ending_here. Update min_ending_here only
if min_ending_here is negative */
if (arr[i] > 0)
{
max_ending_here = max_ending_here * arr[i];
min_ending_here
= min(min_ending_here * arr[i], 1);
flag = 1;
}
/* If this element is 0, then the maximum
product cannot end here, make both
max_ending_here and min_ending _here 0
Assumption: Output is always greater than or
equal to 1. */
else if (arr[i] == 0)
{
max_ending_here = 1;
min_ending_here = 1;
}
/* If element is negative. This is tricky
max_ending_here can either be 1 or positive.
min_ending_here can either be 1 or negative.
next min_ending_here will always be prev.
max_ending_here * arr[i]
next max_ending_here will be 1 if prev
min_ending_here is 1, otherwise
next max_ending_here will be
prev min_ending_here * arr[i] */
else {
int temp = max_ending_here;
max_ending_here
= max(min_ending_here * arr[i], 1);
min_ending_here = temp * arr[i];
}
// update max_so_far, if needed
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
}
if (flag == 0 && max_so_far == 0)
return 0;
return max_so_far;
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 1, -2, -3, 0, 7, -8, -2 };
System.out.println("Maximum Sub array product is "
+ maxSubarrayProduct(arr));
}
} /*This code is contributed by Devesh Agrawal*/
OutputMaximum Sub array product is 112
Time Complexity: O(n)
Auxiliary Space: O(1)
Please refer complete article on Maximum Product Subarray for more details!
Similar Reads
Javascript Program for Maximum Product Subarray Given an array that contains both positive and negative integers, find the product of the maximum product subarray. Expected Time complexity is O(n) and only O(1) extra space can be used.Examples:Input: arr[] = {6, -3, -10, 0, 2} Output: 180 // The subarray is {6, -3, -10} Input: arr[] = {-1, -3, -1
4 min read
Maximum Product Subarray Given an array arr[] consisting of positive, negative, and zero values, find the maximum product that can be obtained from any contiguous subarray of arr[]. Examples:Input: arr[] = [-2, 6, -3, -10, 0, 2]Output: 180Explanation: The subarray with maximum product is [6, -3, -10] with product = 6 * (-3)
15 min read
Maximize product of subarray sum with its minimum element Given an array arr[] consisting of N positive integers, the task is to find the maximum product of subarray sum with the minimum element of that subarray. Examples: Input: arr[] = {3, 1, 6, 4, 5, 2}Output: 60Explanation:The required maximum product can be obtained using subarray {6, 4, 5}Therefore,
10 min read
Maximum product of a triplet (subsequence of size 3) in array Given an integer array, find a maximum product of a triplet in the array.Examples: Input: arr[ ] = [10, 3, 5, 6, 20]Output: 1200Explanation: Multiplication of 10, 6 and 20Input: arr[ ] = [-10, -3, -5, -6, -20]Output: -90Input: arr[ ] = [1, -4, 3, -6, 7, 0]Output: 168[Naive Approach] By Using three n
12 min read
Sliding Window Maximum (Maximum of all subarrays of size K) Given an array arr[] of integers and an integer k, your task is to find the maximum value for each contiguous subarray of size k. The output should be an array of maximum values corresponding to each contiguous subarray.Examples : Input: arr[] = [1, 2, 3, 1, 4, 5, 2, 3, 6], k = 3Output: [3, 3, 4, 5,
15+ min read