Introduction to Heavy Light Decomposition
Last Updated :
23 Jul, 2025
Heavy Light decomposition (HLD) is one of the
most used techniques in competitive programming.
Example Problem: Let us understand Heavy-light decomposition (HLD) with the help of below example.
Suppose we have
an unbalanced tree (not necessarily a Binary Tree) of n nodes, and we have to perform operations on the tree to answer a number of queries, each can be of one of the two types:
- change(a, b): Update weight of the ath edge to b.
- maxEdge(a, b): Print the maximum edge weight on the path from node a to node b. For example maxEdge(5, 10) should print 25.
Assume that nodes are numbered from 1 to n. There must be
n-1 edges. Edge weights are natural numbers. Also assume that both type of queries are interspersed (approximately equal in number), and hence no type can be sidelined to compromise on complexity.
Simple Solution: A Simple solution is to traverse the complete tree for any query. Time complexity of every query in this solution is O(n).
HLD Based Solution:
Upon careful observation of the two operations, we realize that we have seen them somewhere. Eureka!
Segment Trees. A
Segment Tree can be used to perform both types in O(log(n)). But wait! A
Segment Tree can be built from a one-dimensional array / chain (set of nodes linked one after another), and what we have here is a tree. So, can we reduce the tree to chains?
The HLD based solution discussed in the post takes O(log
2(n)) for maxEdge() and O(log n) for change().
Size of a node x is number of nodes in subtree rooted with the node x. Here is an image showing subtree sizes of each node written on top of them:
HLD of a rooted tree is a method of decomposing the vertices of the tree into disjoint chains (no two chains share a node), to achieve important asymptotic time bounds for certain problems involving trees.
HLD can also be seen as ‘coloring’ of the tree’s edges. The ‘Heavy-Light’ comes from the way we segregate edges. We use size of the subtrees rooted at the nodes as our criteria.
An edge is
heavy if size(v) > size(u) where u is any sibling of v. If they come out to be equal, we pick any one such v as special.
change(u, v) operation:
Since
Segment Tree is used as underlying data structure to represent individual chains, change is done using update of
segment tree. So the
time complexity of change operation is O(Log n).
maxEdge(u, v) operation:
- We first find LCA of two nodes. Say node u is 11 and node v is 9. Their LCA is node 1.
- Then we crawl up the tree from node u to the lca. If node u and lca belong to the same chain, we find the maximum from the range that represents the edges between them using segment tree. Else, we find the maximum from the chain to which u belongs, then change chains and repeat while we are not in the same chain.
- We repeat the same step (as step 2) from v to lca and return maximum of two weights.
As per our example above, let’s take u as node 11 and v as node 9. LCA is node 1. We move from node 11 to node 1, and we change chains once. When we change chains, we shift from our queried node to the parent of head of the chain to which it belongs (11 changes to 8 here). Similarly node 9 to node 3 queried (including the light edge), and chain changed (node changed to 1).
Time Complexity of maxEdge is O(log
2(n)). Querying maximum of a chain takes O(log(n)) time as chains are represented using
Segment Tree and there are at-most O(log(n)) chains.
How is the number of chains O(log(n))?
All chains are connected by a light edge (see above examples). So the number of chains is bounded by number of light edges on any path. If we follow a light edge from the root, the subtree rooted at the resulting vertex has at most n/2 size. If we repeat, we land at a vertex with subtree size at most n/4, and so on. We conclude that
number of light edges on any path from root to leaf is at most log(n) (Source: wcipeg)
The main idea of Heavy Light Decomposition of a unbalanced tree is to club vertices of long (or heavy) paths together in chains so that these linear chains can be queried in O(Log n) time using a data structure like Segment Tree.
In the
next article, segment tree representation of chains in more detail and implementation of HLD solution for the problem is discussed as example.
Heavy Light Decomposition | Set 2 (Implementation)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem