∫ xex dx is of the form ∫ f(x) g(x) dx
let f(x) = x and g(x) = ex
we know that, ∫ f(x) g(x) dx = f(x) ∫g(x) dx - ∫ (f'(x) ∫g(x) dx) dx + C
∫ xex dx = x ∫ex dx - ∫( 1 ∫ex dx) dx+ c
= xex - ex + c
(i)∫x6 dx
= (x6+1)/(6 + 1) + C [∫xn dx = {xn+1/(n+1)} + C n ≠ -1]
= (x7/7) + C
(ii) ∫1/x4 dx
= ∫x-4 dx [∫xn dx = {xn+1/(n+1)} + C n ≠ -1]
= (x-4+1)/(-4 + 1) + C
= (x-3/ -3) + C
= -(1/3x3) + C
(iii) ∫3√x dx
= ∫x1/3 dx [∫xn dx = {xn+1/(n+1)}+ C n ≠ -1]
= (x (1/3)+1/((1/3)+ 1) + C
= x4/3 / (4/3) + C
= (3/4)(x4/3) + C
(iv) ∫3x dx
= (3x / loge 3) + C [ ∫ax dx = (ax / logea) + C]
(v) ∫4ex dx
= 4∫ex dx [∫k . f(x) dx = k f(x) dx , where k is constant]
= 4 ex + C [∫ex dx = ex + C]
(vi) ∫(sin x/cos2x) dx
= ∫[(sin x/cos x) .(1/cos x)] dx
= ∫tan x . sec x dx [ ∫tan x .sec x dx = sec x + C ]
= sec x + C
(vii) ∫(1/sin2x) dx
= ∫cosec2x dx [∫cosec2x dx = -cot x + C ]
= -cot x + C
(viii) ∫[1/√(4 - x2)] dx
= ∫[1/√(22 - x2)] dx [we know that, ∫[1/√(a2 - x2)] dx = sin-1(x/a) + C]
= sin-1(x/2) + C
(ix) ∫[1/{3√(x2 - 9)}] dx
= ∫[1/{3√(x2 - 32)}] dx [we know that, \int\frac{1}{x\sqrt{x^2-a^2}}dx = (1/a)sec-1(x/a) + C]
= (1/3)sec-1(x/3) + C
(x) ∫(1 /cos x tan x) dx
= ∫[cos x /(cos x sin x)] dx
= ∫(1/ sin x) dx
= ∫cosec x dx [we know that, ∫cosec x dx = log |cosec x - cot x| + C]
= log |cosec x - cot x| + C