Insertion in Unrolled Linked List
Last Updated :
31 Jan, 2023
An unrolled linked list is a linked list of small arrays, all of the same size where each is so small that the insertion or deletion is fast and quick, but large enough to fill the cache line. An iterator pointing into the list consists of both a pointer to a node and an index into that node containing an array. It is also a data structure and is another variant of Linked List. It is related to B-Tree. It can store an array of elements at a node unlike a normal linked list which stores single element at a node. It is combination of arrays and linked list fusion-ed into one. It increases cache performance and decreases the memory overhead associated with storing reference for metadata. Other major advantages and disadvantages are already mentioned in the previous article.
Prerequisite : Introduction to Unrolled Linked List
Below is the insertion and display operation of Unrolled Linked List.
Input : 72 76 80 94 90 70
capacity = 3
Output : Unrolled Linked List :
72 76
80 94
90 70
Explanation : The working is well shown in the
algorithm below. The nodes get broken at the
mentioned capacity i.e., 3 here, when 3rd element
is entered, the flow moves to another newly created
node. Every node contains an array of size
(int)[(capacity / 2) + 1]. Here it is 2.
Input : 49 47 62 51 77 17 71 71 35 76 36 54
capacity = 5
Output :
Unrolled Linked List :
49 47 62
51 77 17
71 71 35
76 36 54
Explanation : The working is well shown in the
algorithm below. The nodes get broken at the
mentioned capacity i.e., 5 here, when 5th element
is entered, the flow moves to another newly
created node. Every node contains an array of
size (int)[(capacity / 2) + 1]. Here it is 3.
Algorithm :
Insert (ElementToBeInserted)
if start_pos == NULL
Insert the first element into the first node
start_pos.numElement ++
end_pos = start_pos
If end_pos.numElements + 1 < node_size
end_pos.numElements.push(newElement)
end_pos.numElements ++
else
create a new Node new_node
move final half of end_pos.data into new_node.data
new_node.data.push(newElement)
end_pos.numElements = end_pos.data.size / 2 + 1
end_pos.next = new_node
end_pos = new_node
Implementation: Following is the Java implementation of the insertion and display operation. In the below code, the capacity is 5 and random numbers are input.
C++
// C++ program to show the insertion operation of Unrolled Linked List
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
// class for each node
class UnrollNode {
public:
UnrollNode* next;
int num_elements;
int* array;
// Constructor
UnrollNode(int n)
{
next = nullptr;
num_elements = 0;
array = new int[n];
}
};
// Operation of Unrolled Function
class UnrollLinkList {
private:
UnrollNode* start_pos;
UnrollNode* end_pos;
int size_node;
int nNode;
public:
// Parameterized Constructor
UnrollLinkList(int capacity)
{
start_pos = nullptr;
end_pos = nullptr;
nNode = 0;
size_node = capacity + 1;
}
// Insertion operation
void Insert(int num)
{
nNode++;
// Check if the list starts from NULL
if (start_pos == nullptr) {
start_pos = new UnrollNode(size_node);
start_pos->array[0] = num;
start_pos->num_elements++;
end_pos = start_pos;
return;
}
// Attaching the elements into nodes
if (end_pos->num_elements + 1 < size_node) {
end_pos->array[end_pos->num_elements] = num;
end_pos->num_elements++;
}
// Creation of new Node
else {
UnrollNode* node_pointer = new UnrollNode(size_node);
int j = 0;
for (int i = end_pos->num_elements / 2 + 1;
i < end_pos->num_elements; i++)
node_pointer->array[j++] = end_pos->array[i];
node_pointer->array[j++] = num;
node_pointer->num_elements = j;
end_pos->num_elements = end_pos->num_elements / 2 + 1;
end_pos->next = node_pointer;
end_pos = node_pointer;
}
}
// Display the Linked List
void display()
{
cout << "\nUnrolled Linked List = " << endl;
UnrollNode* pointer = start_pos;
while (pointer != nullptr) {
for (int i = 0; i < pointer->num_elements; i++)
cout << pointer->array[i] << " ";
cout << endl;
pointer = pointer->next;
}
cout << endl;
}
};
// Main Class
int main()
{
srand(time(0));
UnrollLinkList ull(5);
// Perform Insertion Operation
for (int i = 0; i < 12; i++) {
// Generate random integers in range 0 to 99
int rand_int1 = rand() % 100;
cout << "Entered Element is " << rand_int1 << endl;
ull.Insert(rand_int1);
ull.display();
}
return 0;
}
// This code is contributed by Vikram_Shirsat
Python3
# Python program to show the insertion operation of Unrolled Linked List
import random
# class for each node
class UnrollNode:
def __init__(self, n):
self.next = None
self.num_elements = 0
self.array = [0] * n
# Operation of Unrolled Function
class UnrollLinkList:
def __init__(self, capacity):
self.start_pos = None
self.end_pos = None
self.nNode = 0
self.size_node = capacity + 1
# Insertion operation
def Insert(self, num):
self.nNode += 1
# Check if the list starts from NULL
if self.start_pos is None:
self.start_pos = UnrollNode(self.size_node)
self.start_pos.array[0] = num
self.start_pos.num_elements += 1
self.end_pos = self.start_pos
return
# Attaching the elements into nodes
if self.end_pos.num_elements + 1 < self.size_node:
self.end_pos.array[self.end_pos.num_elements] = num
self.end_pos.num_elements += 1
# Creation of new Node
else:
node_pointer = UnrollNode(self.size_node)
j = 0
for i in range(self.end_pos.num_elements // 2 + 1, self.end_pos.num_elements):
node_pointer.array[j] = self.end_pos.array[i]
j += 1
node_pointer.array[j] = num
node_pointer.num_elements = j + 1
self.end_pos.num_elements = self.end_pos.num_elements // 2 + 1
self.end_pos.next = node_pointer
self.end_pos = node_pointer
# Display the Linked List
def display(self):
print("\nUnrolled Linked List = ")
pointer = self.start_pos
while pointer is not None:
for i in range(pointer.num_elements):
print(pointer.array[i], end=" ")
print()
pointer = pointer.next
print()
# Main function
if __name__ == "__main__":
ull = UnrollLinkList(5)
# Perform Insertion Operation
for i in range(12):
# Generate random integers in range 0 to 99
rand_int1 = random.randint(0, 99)
print("Entered Element is ", rand_int1)
ull.Insert(rand_int1)
ull.display()
# This code is contributed by Vikram_Shirsat
C#
/* C# program to show the insertion operation
* of Unrolled Linked List */
using System;
// class for each node
public class UnrollNode {
public UnrollNode next;
public int num_elements;
public int[] array;
// Constructor
public UnrollNode(int n)
{
next = null;
num_elements = 0;
array = new int[n];
}
}
// Operation of Unrolled Function
public class UnrollLinkList {
private UnrollNode start_pos;
private UnrollNode end_pos;
int size_node;
int nNode;
// Parameterized Constructor
public UnrollLinkList(int capacity)
{
start_pos = null;
end_pos = null;
nNode = 0;
size_node = capacity + 1;
}
// Insertion operation
public void Insert(int num)
{
nNode++;
// Check if the list starts from NULL
if (start_pos == null) {
start_pos = new UnrollNode(size_node);
start_pos.array[0] = num;
start_pos.num_elements++;
end_pos = start_pos;
return;
}
// Attaching the elements into nodes
if (end_pos.num_elements + 1 < size_node) {
end_pos.array[end_pos.num_elements] = num;
end_pos.num_elements++;
}
// Creation of new Node
else {
UnrollNode node_pointer = new UnrollNode(size_node);
int j = 0;
for (int i = end_pos.num_elements / 2 + 1;
i < end_pos.num_elements; i++)
node_pointer.array[j++] = end_pos.array[i];
node_pointer.array[j++] = num;
node_pointer.num_elements = j;
end_pos.num_elements = end_pos.num_elements / 2 + 1;
end_pos.next = node_pointer;
end_pos = node_pointer;
}
}
// Display the Linked List
public void display()
{
Console.Write("\nUnrolled Linked List = ");
Console.WriteLine();
UnrollNode pointer = start_pos;
while (pointer != null) {
for (int i = 0; i < pointer.num_elements; i++)
Console.Write(pointer.array[i] + " ");
Console.WriteLine();
pointer = pointer.next;
}
Console.WriteLine();
}
}
/* Main Class */
public class UnrolledLinkedList_Check {
// Driver code
public static void Main(String[] args)
{
// create instance of Random class
Random rand = new Random();
UnrollLinkList ull = new UnrollLinkList(5);
// Perform Insertion Operation
for (int i = 0; i < 12; i++) {
// Generate random integers in range 0 to 99
int rand_int1 = rand.Next(100);
Console.WriteLine("Entered Element is " + rand_int1);
ull.Insert(rand_int1);
ull.display();
}
}
}
// This code has been contributed by 29AjayKumar
Java
/* Java program to show the insertion operation
* of Unrolled Linked List */
import java.util.Scanner;
import java.util.Random;
// class for each node
class UnrollNode {
UnrollNode next;
int num_elements;
int array[];
// Constructor
public UnrollNode(int n)
{
next = null;
num_elements = 0;
array = new int[n];
}
}
// Operation of Unrolled Function
class UnrollLinkList {
private UnrollNode start_pos;
private UnrollNode end_pos;
int size_node;
int nNode;
// Parameterized Constructor
UnrollLinkList(int capacity)
{
start_pos = null;
end_pos = null;
nNode = 0;
size_node = capacity + 1;
}
// Insertion operation
void Insert(int num)
{
nNode++;
// Check if the list starts from NULL
if (start_pos == null) {
start_pos = new UnrollNode(size_node);
start_pos.array[0] = num;
start_pos.num_elements++;
end_pos = start_pos;
return;
}
// Attaching the elements into nodes
if (end_pos.num_elements + 1 < size_node) {
end_pos.array[end_pos.num_elements] = num;
end_pos.num_elements++;
}
// Creation of new Node
else {
UnrollNode node_pointer = new UnrollNode(size_node);
int j = 0;
for (int i = end_pos.num_elements / 2 + 1;
i < end_pos.num_elements; i++)
node_pointer.array[j++] = end_pos.array[i];
node_pointer.array[j++] = num;
node_pointer.num_elements = j;
end_pos.num_elements = end_pos.num_elements / 2 + 1;
end_pos.next = node_pointer;
end_pos = node_pointer;
}
}
// Display the Linked List
void display()
{
System.out.print("\nUnrolled Linked List = ");
System.out.println();
UnrollNode pointer = start_pos;
while (pointer != null) {
for (int i = 0; i < pointer.num_elements; i++)
System.out.print(pointer.array[i] + " ");
System.out.println();
pointer = pointer.next;
}
System.out.println();
}
}
/* Main Class */
class UnrolledLinkedList_Check {
// Driver code
public static void main(String args[])
{
Scanner sc = new Scanner(System.in);
// create instance of Random class
Random rand = new Random();
UnrollLinkList ull = new UnrollLinkList(5);
// Perform Insertion Operation
for (int i = 0; i < 12; i++) {
// Generate random integers in range 0 to 99
int rand_int1 = rand.nextInt(100);
System.out.println("Entered Element is " + rand_int1);
ull.Insert(rand_int1);
ull.display();
}
}
}
JavaScript
<script>
/* Javascript program to show the insertion operation
* of Unrolled Linked List */
// class for each node
class UnrollNode
{
// Constructor
constructor(n)
{
this.next = null;
this.num_elements = 0;
this.array = new Array(n);
for(let i = 0; i < n; i++)
{
this.array[i] = 0;
}
}
}
// Operation of Unrolled Function
class UnrollLinkList
{
// Parameterized Constructor
constructor(capacity)
{
this.start_pos = null;
this.end_pos = null;
this.nNode = 0;
this.size_node = capacity + 1;
}
// Insertion operation
Insert(num)
{
this.nNode++;
// Check if the list starts from NULL
if (this.start_pos == null) {
this.start_pos = new UnrollNode(this.size_node);
this.start_pos.array[0] = num;
this.start_pos.num_elements++;
this.end_pos = this.start_pos;
return;
}
// Attaching the elements into nodes
if (this.end_pos.num_elements + 1 < this.size_node) {
this.end_pos.array[this.end_pos.num_elements] = num;
this.end_pos.num_elements++;
}
// Creation of new Node
else {
let node_pointer = new UnrollNode(this.size_node);
let j = 0;
for (let i = Math.floor(this.end_pos.num_elements / 2 )+ 1;
i < this.end_pos.num_elements; i++)
node_pointer.array[j++] = this.end_pos.array[i];
node_pointer.array[j++] = num;
node_pointer.num_elements = j;
this.end_pos.num_elements = Math.floor(this.end_pos.num_elements / 2) + 1;
this.end_pos.next = node_pointer;
this.end_pos = node_pointer;
}
}
// Display the Linked List
display()
{
document.write("<br>Unrolled Linked List = ");
document.write("<br>");
let pointer = this.start_pos;
while (pointer != null) {
for (let i = 0; i < pointer.num_elements; i++)
document.write(pointer.array[i] + " ");
document.write("<br>");
pointer = pointer.next;
}
document.write("<br>");
}
}
// Driver code
let ull = new UnrollLinkList(5);
// Perform Insertion Operation
for (let i = 0; i < 12; i++)
{
// Generate random integers in range 0 to 99
let rand_int1 = Math.floor(Math.random()*(100));
document.write("Entered Element is " + rand_int1+"<br>");
ull.Insert(rand_int1);
ull.display();
}
// This code is contributed by rag2127
</script>
OutputEntered Element is 67
Unrolled Linked List =
67
Entered Element is 69
Unrolled Linked List =
67 69
Entered Element is 50
Unrolled Linked List =
67 69 50
Entered Element is 60
Unrolled Linked List =
67 69 50 60
Entered Element is 18
Unrolled Linked List =
67 69 50 60 18
Entered Element is 15
Unrolled Linked List =
67 69 50
60 18 15
Entered Element is 41
Unrolled Linked List =
67 69 50
60 18 15 41
Entered Element is 79
Unrolled Linked List =
67 69 50
60 18 15 41 79
Entered Element is 12
Unrolled Linked List =
67 69 50
60 18 15
41 79 12
Entered Element is 95
Unrolled Linked List =
67 69 50
60 18 15
41 79 12 95
Entered Element is 37
Unrolled Linked List =
67 69 50
60 18 15
41 79 12 95 37
Entered Element is 13
Unrolled Linked List =
67 69 50
60 18 15
41 79 12
95 37 13
Time complexity : O(n)
Also, few real-world applications :
- It is used in B-Tree and T-Tree
- Used in Hashed Array Tree
- Used in Skip List
- Used in CDR Coding
Similar Reads
Insertion in Linked List
Insertion in a linked list involves adding a new node at a specified position in the list. There are several types of insertion based on the position where the new node is to be added:At the front of the linked list Before a given node.After a given node.At a specific position.At the end of the link
4 min read
Unrolled Linked List | Set 1 (Introduction)
Like array and linked list, the unrolled Linked List is also a linear data structure and is a variant of a linked list. Why do we need unrolled linked list? One of the biggest advantages of linked lists over arrays is that inserting an element at any location takes only O(1). However, the catch here
10 min read
Insertion in Circular Singly Linked List
In this article, we will learn how to insert a node into a circular linked list. Insertion is a fundamental operation in linked lists that involves adding a new node to the list. In a circular linked list, the last node connects back to the first node, creating a loop.There are four main ways to add
12 min read
Insertion in a Doubly Linked List
Inserting a new node in a doubly linked list is very similar to inserting new node in linked list. There is a little extra work required to maintain the link of the previous node. In this article, we will learn about different ways to insert a node in a doubly linked list.Table of ContentInsertion a
6 min read
Link List sum and Prime Insertion
Given the head of a singly linked list, the task is to perform the following operations: Sum the values of adjacent nodes, i.e., the current node and its next node.Insert the nearest prime number to the sum between the two adjacent nodes.Note: If more than one prime number exists at an equal distanc
13 min read
Insertion Sort for Singly Linked List
Given a singly linked list, the task is to sort the list (in ascending order) using the insertion sort algorithm.Examples:Input: 5->4->1->3->2Output: 1->2->3->4->5Input: 4->3->2->1Output: 1->2->3->4The prerequisite is Insertion Sort on Array. The idea is to
8 min read
Recursive insertion and traversal linked list
The task is to implement a singly linked list with two core functionalities using recursion: Insertion: Insert a new node at the end of the linked list.Traversal: Traverse the linked list and print the data stored in each node.Example :Input: Values to be inserted = 1, 2, 3, 4, 5Output: 1 -> 2 -
7 min read
Insertion Sort for Doubly Linked List
Given a doubly linked list, the task is to sort the doubly linked list in non-decreasing order using the insertion sort.Examples:Input: head: 5<->3<->4<->1<->2Output: 1<->2<->3<->4<->5Explanation: Doubly Linked List after sorting using insertion sort t
10 min read
Insertion at the end in circular linked list
A circular linked list is a data structure where each node points to the next, and the last node connects back to the first, creating a loop. Insertion at the end in circular linked list is an important operation. Understanding how to perform this insertion is essential for effectively manage and us
7 min read
Sorted insert for circular linked list
Given a sorted circular linked list, your task is to insert a new node in this circular list so that it remains a sorted circular linked list.Examples:Input: head = 1Â â2Â â4, data = 2Output: 1Â â2Â â2Â â4Explanation: We can add 2 after the second node.Input: head = 1Â â4Â â7Â â9, data = 5Output: 1Â â4Â â5Â â7
10 min read