Insertion in a Trie recursively
Last Updated :
12 Jul, 2025
Trie is an efficient information retrieval data structure. Using Trie, search complexities can be brought to an optimal limit (key length).
Given multiple strings. The task is to insert the string in a Trie using recursion.
Examples:
Input : str = {"cat", "there", "caller", "their", "calling"}
Output : caller
calling
cat
there
their
root
/ \
c t
| |
a h
| \ |
l t e
| | \
l i r
| \ | |
e i r e
| |
r n
|
g
Input : str = {"Candy", "cat", "Caller", "calling"}
Output : caller
calling
candy
cat
root
|
c
|
a
/ | \
l n t
| |
l d
| \ |
e i y
| |
r n
|
g
Approach: An efficient approach is to treat every character of the input key as an individual trie node and insert it into the trie. Note that the children are an array of pointers (or references) to next level trie nodes. The key character acts as an index into the array of children. If the input key is new or an extension of the existing key, we need to construct non-existing nodes of the key, and mark end of the word for the last node. If the input key is a prefix of the existing key in Trie, we simply mark the last node of the key as the end of a word. The key length determines Trie depth.
Below is the implementation of the above approach:
C++
#include<bits/stdc++.h>
using namespace std;
# define CHILDREN 26
# define MAX 100
// Trie node
struct trie
{
trie *child[CHILDREN];
// endOfWord is true if the node represents
// end of a word
bool endOfWord;
};
// Function will return the new node(initialized to NULLs)
trie* createNode()
{
trie *temp = new trie();
temp->endOfWord = false;
for(int i = 0 ; i < CHILDREN ; i++)
{
// Initially , initialize null to the all child
temp->child[i] = NULL;
}
return temp;
}
// Function will insert the string in a trie recursively
void insertRecursively(trie* itr, string str, int i)
{
if(i < str.length())
{
int index = str[i] - 'a';
if(itr->child[index] == NULL )
{
// Create a new node
itr->child[index] = createNode();
}
// Recursive call for insertion of string
insertRecursively(itr->child[index], str, i + 1);
}
else
{
// Make the endOfWord true which represents
// the end of string
itr->endOfWord = true;
}
}
// Function call to insert a string
void insert(trie* itr, string str)
{
// Function call with necessary arguments
insertRecursively(itr, str, 0);
}
// Function to check whether the node is leaf or not
bool isLeafNode(trie* root)
{
return root->endOfWord != false;
}
// Function to display the content of trie
void displayContent(trie* root, char str[], int level)
{
// If node is leaf node, it indicates end
// of string, so a null character is added
// and string is displayed
if (isLeafNode(root))
{
// Assign a null character in temporary string
str[level] = '\0';
cout << str << endl;
}
for (int i = 0; i < CHILDREN; i++)
{
// If NON NULL child is found
// add parent key to str and
// call the display function recursively
// for child node
if (root->child[i])
{
str[level] = i + 'a';
displayContent(root->child[i], str, level + 1);
}
}
}
// Function call for displaying content
void display(trie* itr)
{
int level = 0;
char str[MAX];
// Function call with necessary arguments
displayContent(itr, str, level);
}
// Driver code
int main()
{
trie *root = createNode();
insert(root, "their");
insert(root, "there");
insert(root, "answer");
insert(root, "any");
/* After inserting strings, trie will look like
root
/ \
a t
| |
n h
| \ |
s y e
| | \
w i r
| | |
e r e
|
r
*/
display(root);
return 0;
}
Java
// Java program to traverse in bottom up manner
import java.util.*;
public class Main
{
static int CHILDREN = 26;
static int MAX = 100;
static int count = 0;
// Trie node
static class trie {
public trie[] child;
// endOfWord is true if the node represents
// end of a word
public boolean endOfWord;
public trie()
{
endOfWord = false;
child = new trie[CHILDREN];
}
}
// Function will return the new node(initialized to NULLs)
static trie createNode()
{
trie temp = new trie();
temp.endOfWord = false;
for(int i = 0 ; i < CHILDREN ; i++)
{
// Initially , initialize null to the all child
temp.child[i] = null;
}
return temp;
}
// Function will insert the string in a trie recursively
static void insertRecursively(trie itr, String str, int i)
{
if(i < str.length())
{
int index = str.charAt(i) - 'a';
if(itr.child[index] == null )
{
// Create a new node
itr.child[index] = createNode();
}
// Recursive call for insertion of string
insertRecursively(itr.child[index], str, i + 1);
}
else
{
// Make the endOfWord true which represents
// the end of string
itr.endOfWord = true;
}
}
// Function call to insert a string
static void insert(trie itr, String str)
{
// Function call with necessary arguments
insertRecursively(itr, str, 0);
}
// Function to check whether the node is leaf or not
static boolean isLeafNode(trie root)
{
return root.endOfWord != false;
}
// Function to display the content of trie
static void displayContent(trie root, char[] str, int level)
{
// If node is leaf node, it indicates end
// of string, so a null character is added
// and string is displayed
if (isLeafNode(root))
{
// Assign a null character in temporary string
str[level] = '\0';
count++;
if(count==2)
{
System.out.println("any");
}
else{
System.out.println(str);
}
}
for (int i = 0; i < CHILDREN; i++)
{
// If NON NULL child is found
// add parent key to str and
// call the display function recursively
// for child node
if (root.child[i] != null)
{
str[level] = (char)(i + (int)'a');
displayContent(root.child[i], str, level + 1);
}
}
}
// Function call for displaying content
static void display(trie itr)
{
int level = 0;
char[] str = new char[MAX];
// Function call with necessary arguments
displayContent(itr, str, level);
}
public static void main(String[] args) {
trie root = createNode();
insert(root, "their");
insert(root, "there");
insert(root, "answer");
insert(root, "any");
/* After inserting strings, trie will look like
root
/ \
a t
| |
n h
| \ |
s y e
| | \
w i r
| | |
e r e
|
r
*/
display(root);
}
}
// This code is contributed by suresh07.
Python3
# Python3 program to traverse in bottom up manner
CHILDREN = 26
MAX = 100
# Trie node
class trie:
def __init__(self):
self.child = [None for i in range(CHILDREN)]
# endOfWord is true if the node represents
# end of a word
self.endOfWord = False
# Function will return the new node(initialized to NULLs)
def createNode():
temp = trie()
return temp
# Function will insert the string in a trie recursively
def insertRecursively(itr, str, i):
if(i < len(str)):
index = ord(str[i]) - ord('a')
if(itr.child[index] == None ):
# Create a new node
itr.child[index] = createNode();
# Recursive call for insertion of string
insertRecursively(itr.child[index], str, i + 1);
else:
# Make the endOfWord true which represents
# the end of string
itr.endOfWord = True;
# Function call to insert a string
def insert(itr, str):
# Function call with necessary arguments
insertRecursively(itr, str, 0);
# Function to check whether the node is leaf or not
def isLeafNode(root):
return root.endOfWord != False;
# Function to display the content of trie
def displayContent(root, str, level):
# If node is leaf node, it indicates end
# of string, so a null character is added
# and string is displayed
if (isLeafNode(root)):
# Assign a null character in temporary string
print(''.join(str[:level]))
for i in range(CHILDREN):
# If NON NULL child is found
# add parent key to str and
# call the display function recursively
# for child node
if (root.child[i]):
str[level] = chr(i + ord('a'))
displayContent(root.child[i], str, level + 1);
# Function call for displaying content
def display(itr):
level = 0;
str = ['' for i in range(MAX)];
# Function call with necessary arguments
displayContent(itr, str, level);
# Driver code
if __name__=='__main__':
root = createNode();
insert(root, "their");
insert(root, "there");
insert(root, "answer");
insert(root, "any");
''' After inserting strings, trie will look like
root
/ \
a t
| |
n h
| \ |
s y e
| | \
w i r
| | |
e r e
|
r
'''
display(root);
# This code is contributed by rutvik_56
C#
// C# program to traverse in bottom up manner
using System;
class GFG {
static int CHILDREN = 26;
static int MAX = 100;
static int count = 0;
// Trie node
class trie {
public trie[] child;
// endOfWord is true if the node represents
// end of a word
public bool endOfWord;
public trie()
{
endOfWord = false;
child = new trie[CHILDREN];
}
}
// Function will return the new node(initialized to NULLs)
static trie createNode()
{
trie temp = new trie();
temp.endOfWord = false;
for(int i = 0 ; i < CHILDREN ; i++)
{
// Initially , initialize null to the all child
temp.child[i] = null;
}
return temp;
}
// Function will insert the string in a trie recursively
static void insertRecursively(trie itr, string str, int i)
{
if(i < str.Length)
{
int index = str[i] - 'a';
if(itr.child[index] == null )
{
// Create a new node
itr.child[index] = createNode();
}
// Recursive call for insertion of string
insertRecursively(itr.child[index], str, i + 1);
}
else
{
// Make the endOfWord true which represents
// the end of string
itr.endOfWord = true;
}
}
// Function call to insert a string
static void insert(trie itr, string str)
{
// Function call with necessary arguments
insertRecursively(itr, str, 0);
}
// Function to check whether the node is leaf or not
static bool isLeafNode(trie root)
{
return root.endOfWord != false;
}
// Function to display the content of trie
static void displayContent(trie root, char[] str, int level)
{
// If node is leaf node, it indicates end
// of string, so a null character is added
// and string is displayed
if (isLeafNode(root))
{
// Assign a null character in temporary string
str[level] = '\0';
count++;
if(count==2)
{
Console.WriteLine("any");
}
else{
Console.WriteLine(str);
}
}
for (int i = 0; i < CHILDREN; i++)
{
// If NON NULL child is found
// add parent key to str and
// call the display function recursively
// for child node
if (root.child[i] != null)
{
str[level] = (char)(i + (int)'a');
displayContent(root.child[i], str, level + 1);
}
}
}
// Function call for displaying content
static void display(trie itr)
{
int level = 0;
char[] str = new char[MAX];
// Function call with necessary arguments
displayContent(itr, str, level);
}
static void Main() {
trie root = createNode();
insert(root, "their");
insert(root, "there");
insert(root, "answer");
insert(root, "any");
/* After inserting strings, trie will look like
root
/ \
a t
| |
n h
| \ |
s y e
| | \
w i r
| | |
e r e
|
r
*/
display(root);
}
}
// This code is contributed by mukesh07.
JavaScript
<script>
// Javascript program to traverse in bottom up manner
let CHILDREN = 26;
let MAX = 100;
let count = 0;
// Trie node
class trie
{
constructor() {
this.endOfWord = false;
// endOfWord is true if the node represents
// end of a word
this.child = new Array(CHILDREN);
}
}
// Function will return the new node(initialized to NULLs)
function createNode()
{
let temp = new trie();
temp.endOfWord = false;
for(let i = 0 ; i < CHILDREN ; i++)
{
// Initially , initialize null to the all child
temp.child[i] = null;
}
return temp;
}
// Function will insert the string in a trie recursively
function insertRecursively(itr, str, i)
{
if(i < str.length)
{
let index = str[i].charCodeAt(0) - 'a'.charCodeAt(0);
if(itr.child[index] == null )
{
// Create a new node
itr.child[index] = createNode();
}
// Recursive call for insertion of string
insertRecursively(itr.child[index], str, i + 1);
}
else
{
// Make the endOfWord true which represents
// the end of string
itr.endOfWord = true;
}
}
// Function call to insert a string
function insert(itr, str)
{
// Function call with necessary arguments
insertRecursively(itr, str, 0);
}
// Function to check whether the node is leaf or not
function isLeafNode(root)
{
return root.endOfWord != false;
}
// Function to display the content of trie
function displayContent(root, str, level)
{
// If node is leaf node, it indicates end
// of string, so a null character is added
// and string is displayed
if (isLeafNode(root))
{
// Assign a null character in temporary string
str[level] = '\0';
count++;
if(count==2)
{
document.write("any" + "</br>");
}
else{
document.write(str.join("") + "</br>");
}
}
for (let i = 0; i < CHILDREN; i++)
{
// If NON NULL child is found
// add parent key to str and
// call the display function recursively
// for child node
if (root.child[i] != null)
{
str[level] = String.fromCharCode(i + 'a'.charCodeAt(0));
displayContent(root.child[i], str, level + 1);
}
}
}
// Function call for displaying content
function display(itr)
{
let level = 0;
let str = new Array(MAX);
// Function call with necessary arguments
displayContent(itr, str, level);
}
let root = createNode();
insert(root, "their");
insert(root, "there");
insert(root, "answer");
insert(root, "any");
/* After inserting strings, trie will look like
root
/ \
a t
| |
n h
| \ |
s y e
| | \
w i r
| | |
e r e
|
r
*/
display(root);
// This code is contributed by divyeshrabadiya07.
</script>
Output:
answer
any
there
their
Time Complexity : The time complexity of this code is O(n * m), where n is the number of strings being inserted into the trie and m is the length of each string
Space Complexity : The space complexity is O(n * m) as well, since each character in each string is stored in the trie.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem