Indexing in Databases - Set 1
Last Updated :
06 May, 2025
Indexing is a crucial technique used in databases to optimize data retrieval operations. It improves query performance by minimizing disk I/O operations, thus reducing the time it takes to locate and access data. Essentially, indexing allows the database management system (DBMS) to locate data more efficiently without having to scan the entire dataset.
Indexes are organized data structures that allow quick searching based on key values. When an index is created for a database table, it maintains a sorted order of key values along with pointers to the actual data rows. This process significantly reduces the number of disk accesses required to fulfill a query.
Structure of Index in DatabaseAttributes of Indexing
Several Important attributes of indexing affect the performance and efficiency of database operations:
1. Access Types: This refers to the type of access such as value-based search, range access, etc.
2. Access Time: It refers to the time needed to find a particular data element or set of elements.
3. Insertion Time: It refers to the time taken to find the appropriate space and insert new data.
4. Deletion Time: Time taken to find an item and delete it as well as update the index structure.
5. Space Overhead: It refers to the additional space required by the index.
Structure of Index in DatabaseFile Organization in Indexing
File organization refers to how data and indexes are physically stored in memory or on disk. The following are the common types of file organizations used in indexing:
1. Sequential File Organization (Ordered Index File)
In this type of organization, the indices are based on a sorted ordering of the values. These are generally fast and a more traditional type of storing mechanism. These Ordered or Sequential file organizations might store the data in a dense or sparse format.
- Dense Index: Every search key value in the data file corresponds to an index record. This method ensures that each key value has a reference to its data location.
Example: If a table contains multiple entries for the same key, a dense index ensures that each key value has its own index record.
Dense Index- Sparse Index: The index record appears only for a few items in the data file. Each item points to a block as shown. To locate a record, we find the index record with the largest search key value less than or equal to the search key value we are looking for.
Access Method: To locate a record, we find the index record with the largest key value less than or equal to the search key, and then follow the pointers sequentially.
Access Cost: Accesses=log2(n)+1\text{Accesses} = \log_2(n) + 1Accesses=log2(n)+1, where nnn is the number of blocks involved in the index file.
Sparse Index2. Hash File Organization
In hash file organization, data is distributed across a range of buckets based on a hash function applied to the key values. The hash function maps each key to a particular bucket, where the corresponding data can be located.
Types of Indexing Methods
There are different types of indexing techniques, each optimized for specific use cases.
1. Clustered Indexing
Clustered indexing is a technique where multiple related records are stored together in the same file. This helps reduce the cost of searching because related data is kept close to each other. Clustered indexing is especially useful when multiple tables or records need to be frequently joined. Storing related records together makes this process faster and more efficient.
In clustered indexing, the data is stored in an ordered file, usually based on a non-key field. This ordering can be based on a primary key or, in some cases, a non-primary key. When an index is created on non-primary key columns, which may not be unique, the solution is to combine two or more columns together to form a unique value. This combination is then used to create the index.
Clustered indexing works by grouping records with similar properties together. For example, students can be grouped by their semester, such as first-semester, second-semester, and so on. By grouping related records together, it becomes faster to retrieve them because the index allows for quicker identification and search of the data.
Clustered Indexing2. Primary Indexing
This is a type of Clustered Indexing wherein the data is sorted according to the search key and the primary key of the database table is used to create the index. It is a default format of indexing where it induces sequential file organization. As primary keys are unique and are stored in a sorted manner, the performance of the searching operation is quite efficient.
- Key Features: The data is stored in sequential order, making searches faster and more efficient.
3. Non-clustered or Secondary Indexing
A non-clustered index just tells us where the data lies, i.e. it gives us a list of virtual pointers or references to the location where the data is actually stored. Data is not physically stored in the order of the index. Instead, data is present in leaf nodes.
Example: The contents page of a book. Each entry gives us the page number or location of the information stored. The actual data here(information on each page of the book) is not organized but we have an ordered reference(contents page) to where the data points actually lie. We can have only dense ordering in the non-clustered index as sparse ordering is not possible because data is not physically organized accordingly.
It requires more time as compared to the clustered index because some amount of extra work is done in order to extract the data by further following the pointer. In the case of a clustered index, data is directly present in front of the index.
Non Clustered Indexing4. Multilevel Indexing
With the growth of the size of the database, indices also grow. As the index is stored in the main memory, a single-level index might become too large a size to store with multiple disk accesses. The multilevel indexing segregates the main block into various smaller blocks so that the same can be stored in a single block.
The outer blocks are divided into inner blocks which in turn are pointed to the data blocks. This can be easily stored in the main memory with fewer overheads. This hierarchical approach reduces memory overhead and speeds up query execution.
Multilevel IndexingAdvantages of Indexing
- Improved Query Performance: Indexing enables faster data retrieval from the database. The database may rapidly discover rows that match a specific value or collection of values by generating an index on a column, minimizing the amount of time it takes to perform a query.
- Efficient Data Access: Indexing can enhance data access efficiency by lowering the amount of disk I/O required to retrieve data. The database can maintain the data pages for frequently visited columns in memory by generating an index on those columns, decreasing the requirement to read from disk.
- Optimized Data Sorting: Indexing can also improve the performance of sorting operations. By creating an index on the columns used for sorting, the database can avoid sorting the entire table and instead sort only the relevant rows.
- Consistent Data Performance: Indexing can assist ensure that the database performs consistently even as the amount of data in the database rises. Without indexing, queries may take longer to run as the number of rows in the table grows, while indexing maintains a roughly consistent speed.
- Data Integrity: By ensuring that only unique values are inserted into columns that have been indexed as unique, indexing can also be utilized to ensure the integrity of data. This avoids storing duplicate data in the database, which might lead to issues when performing queries or reports.
Disadvantages of Indexing
While indexing offers many advantages, it also comes with certain trade-offs:
- Increased Storage Space: Indexes require additional storage. Depending on the size of the data, this can significantly increase the overall storage requirements.
- Increased Maintenance Overhead: Indexes must be updated whenever data is inserted, deleted, or modified, which can slow down these operations.
- Slower Insert/Update Operations: Since indexes must be maintained and updated, inserting or updating data takes longer than in a non-indexed database.
- Complexity in Choosing the Right Index: Determining the appropriate indexing strategy for a particular dataset can be challenging and requires an understanding of query patterns and access behaviors.
Features of Indexing
Several key features define the indexing process in databases:
- Efficient Data Structures: Indexes use efficient data structures like B-trees, B+ trees, and hash tables to enable fast data retrieval.
- Periodic Index Maintenance: Indexes need to be periodically maintained, especially when the underlying data changes frequently. Maintenance tasks include updating, rebuilding, or removing obsolete indexes.
- Query Optimization: Indexes play a critical role in query optimization. The DBMS query optimizer uses indexes to determine the most efficient execution plan for a query.
- Handling Fragmentation: Index fragmentation can reduce the effectiveness of an index. Regular defragmentation can help maintain optimal performance.
Conclusion
Indexing is a very useful technique that helps in optimizing the search time in database queries. The table of database indexing consists of a search key and pointer. There are four types of indexing: Primary, Secondary Clustering, and Multivalued Indexing. Primary indexing is divided into two types, dense and sparse. Dense indexing is used when the index table contains records for every search key. Sparse indexing is used when the index table does not use a search key for every record. Multilevel indexing uses B+ Tree. The main purpose of indexing is to provide better performance for data retrieval.
Similar Reads
DBMS Tutorial â Learn Database Management System Database Management System (DBMS) is a software used to manage data from a database. A database is a structured collection of data that is stored in an electronic device. The data can be text, video, image or any other format.A relational database stores data in the form of tables and a NoSQL databa
7 min read
Basic of DBMS
Introduction of DBMS (Database Management System)A Database Management System (DBMS) is a software solution designed to efficiently manage, organize, and retrieve data in a structured manner. It serves as a critical component in modern computing, enabling organizations to store, manipulate, and secure their data effectively. From small application
8 min read
History of DBMSThe first database management systems (DBMS) were created to handle complex data for businesses in the 1960s. These systems included Charles Bachman's Integrated Data Store (IDS) and IBM's Information Management System (IMS). Databases were first organized into tree-like structures using hierarchica
7 min read
Advantages of Database Management SystemDatabase Management System (DBMS) is a collection of interrelated data and a set of software tools/programs that access, process, and manipulate data. It allows access, retrieval, and use of that data by considering appropriate security measures. The Database Management system (DBMS) is really usefu
6 min read
Disadvantages of DBMSYou might have encountered bulks of files/registers either at some office/school/university. The traditional file management system has been followed for managing the information or data at many organizations and by many businesses. It used to be cost-effective and easily accessible. With evolving t
9 min read
Application of DBMSThe efficient and safe management, saving and retrieval of data is made possible by the Database Management Systems. They provide strong solutions for the data management demands and are the foundation of the numerous applications used in a variety of the sectors. Recognizing the uses of DBMSs aids
5 min read
Need for DBMSA DBMS is essential for efficiently storing, organizing, and managing large amounts of data. It ensures data consistency, integrity, and security while allowing multiple users to access and manipulate data simultaneously. DBMS simplifies complex data operations and supports quick retrieval, making d
7 min read
DBMS Architecture 1-level, 2-Level, 3-LevelA database stores important information that must be accessed quickly and securely. To manage this data properly, it is important to choose the right database architecture. The Database Management System (DBMS) architecture decides how the database is built, organized, and maintained. It also contro
7 min read
Difference between File System and DBMSA file system and a DBMS are two kinds of data management systems that are used in different capacities and possess different characteristics. A File System is a way of organizing files into groups and folders and then storing them in a storage device. It provides the media that stores data as well
6 min read
Entity Relationship Model
Introduction of ER ModelThe Entity-Relationship Model (ER Model) is a conceptual model for designing a databases. This model represents the logical structure of a database, including entities, their attributes and relationships between them. Entity: An objects that is stored as data such as Student, Course or Company.Attri
10 min read
Structural Constraints of Relationships in ER ModelStructural constraints, within the context of Entity-Relationship (ER) modeling, specify and determine how the entities take part in the relationships and this gives an outline of how the interactions between the entities can be designed in a database. Two primary types of constraints are cardinalit
5 min read
Difference between entity, entity set and entity typeThe Entity-Relationship (ER) Model is one of the primary components of Database Management Systems and is very important for designing the logical structure of databases. It helps define data, and the relationship between the data entities and it makes the system easier to visualize. This is the rea
6 min read
Difference between Strong and Weak EntityAn entity is a âthingâ or âobjectâ in the real world. An entity contains attributes, which describe that entity. So anything about which we store information is called an entity. Entities are recorded in the database and must be distinguishable, i.e., easily recognized from the group. In this articl
3 min read
Generalization, Specialization and Aggregation in ER ModelUsing the ER model for bigger data creates a lot of complexity while designing a database model, So in order to minimize the complexity Generalization, Specialization, and Aggregation were introduced in the ER model. These were used for data abstraction. In which an abstraction mechanism is used to
4 min read
Recursive Relationships in ER diagramsA relationship between two entities of the same entity set is called a recursive relationship or repeated relationship. Here the same entity set participates more than once in a relationship type with a different role for each instance. Recursive relationships are often used to represent hierarchies
3 min read
Relational Model
Introduction of Relational Model and Codd Rules in DBMSThe Relational Model is a fundamental concept in Database Management Systems (DBMS) that organizes data into tables, also known as relations. This model simplifies data storage, retrieval, and management by using rows and columns. Coddâs Rules, introduced by Dr. Edgar F. Codd, define the principles
14 min read
Types of Keys in Relational Model (Candidate, Super, Primary, Alternate and Foreign)In the context of a relational database, Keys are one of the basic requirements of a relational database model. keys are fundamental components that ensure data integrity, uniqueness, and efficient access. It is widely used to identify the tuples(rows) uniquely in the table. We also use keys to set
8 min read
Anomalies in Relational ModelAnomalies in the relational model refer to inconsistencies or errors that can arise when working with relational databases, specifically in the context of data insertion, deletion, and modification. There are different types of anomalies that can occur in referencing and referenced relations which c
5 min read
Mapping from ER Model to Relational ModelConverting an Entity-Relationship (ER) diagram to a Relational Model is a crucial step in database design. The ER model represents the conceptual structure of a database, while the Relational Model is a physical representation that can be directly implemented using a Relational Database Management S
7 min read
Strategies for Schema design in DBMSThere are various strategies that are considered while designing a schema. Most of these strategies follow an incremental approach that is, they must start with some schema constructs derived from the requirements and then they incrementally modify, refine, or build on them. In this article, let's d
7 min read
Relational Algebra
Introduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
9 min read
Basic Operators in Relational AlgebraThe Relational Model is a way of structuring data using relations, which are a collection of tuples that have the same attributes. Relational Algebra is a procedural query language that takes relations as input and returns relations as output. Here, we'll explore the basic operators of Relational Al
4 min read
Extended Operators in Relational AlgebraExtended operators in relational algebra are operators that go beyond the basic set of relational algebra operations. They are also known as derived operators because they can be constructed from combinations of the fundamental operators. There are mainly three types of extended operators in Relatio
7 min read
SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. Joins allow efficient data retrieval, which is essential for generating meaningful observations and solving complex business queries. Understanding SQL join types, such as INNER JOIN, LEFT JOIN, RIGHT JO
6 min read
Join operation Vs Nested query in DBMSThe growth of technology and automation coupled with exponential amounts of data has led to the importance and omnipresence of databases which, simply put, are organized collections of data. Considering a naive approach, one can theoretically keep all the data in one large table, however that increa
5 min read
Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used in relational database management systems (RDBMS) to retrieve data from tables. TRC is based on the concept of tuples, which are ordered sets of attribute values that represent a single row or record in a database table. TRC is
4 min read
Domain Relational Calculus in DBMSDomain Relational Calculus is a non-procedural query language equivalent in power to Tuple Relational Calculus. Domain Relational Calculus provides only the description of the query but it does not provide the methods to solve it. In Domain Relational Calculus, a query is expressed as, { < x1, x2
2 min read
Functional Dependencies
Normalisation
Introduction of Database NormalizationNormalization is an important process in database design that helps improve the database's efficiency, consistency, and accuracy. It makes it easier to manage and maintain the data and ensures that the database is adaptable to changing business needs.Database normalization is the process of organizi
8 min read
Normal Forms in DBMSIn the world of database management, Normal Forms are important for ensuring that data is structured logically, reducing redundancy, and maintaining data integrity. When working with databases, especially relational databases, it is critical to follow normalization techniques that help to eliminate
8 min read
First Normal Form (1NF)In relational database design, normalization is the process of organizing data to reduce redundancy and improve data integrity. First Normal Form (1NF) is the first step in this process. It ensures that the structure of a database table is organized in a way that makes it easier to manage and query.
4 min read
Second Normal Form (2NF)Second Normal Form (2NF) is based on the concept of fully functional dependency. It is a way to organize a database table so that it reduces redundancy and ensures data consistency. Fully Functional Dependency means a non-key attribute depends on the entire primary key, not just part of it.For a tab
5 min read
Boyce-Codd Normal Form (BCNF)While Third Normal Form (3NF) is generally sufficient for organizing relational databases, it may not completely eliminate redundancy. Redundancy can still occur if thereâs a dependency XâX where X is not a candidate key. This issue is addressed by a stronger normal form known as Boyce-Codd Normal F
7 min read
Introduction of 4th and 5th Normal Form in DBMSTwo of the highest levels of database normalization are the fourth normal form (4NF) and the fifth normal form (5NF). Multivalued dependencies are handled by 4NF, whereas join dependencies are handled by 5NF. If two or more independent relations are kept in a single relation or we can say multivalue
5 min read
The Problem of Redundancy in DatabaseRedundancy means having multiple copies of the same data in the database. This problem arises when a database is not normalized. Suppose a table of student details attributes is: student ID, student name, college name, college rank, and course opted. Student_ID Name Contact College Course Rank 100Hi
6 min read
Dependency Preserving Decomposition - DBMSIn a Database Management System (DBMS), dependency-preserving decomposition refers to the process of breaking down a complex database schema into simpler, smaller tables, such that all the functional dependencies of the original schema are still enforceable without needing to perform additional join
7 min read
Lossless Decomposition in DBMSThe original relation and relation reconstructed from joining decomposed relations must contain the same number of tuples if the number is increased or decreased then it is Lossy Join decomposition. Lossless join decomposition ensures that never get the situation where spurious tuples are generated
5 min read
Lossless Join and Dependency Preserving DecompositionDecomposition of a relation is done when a relation in a relational model is not in appropriate normal form. Relation R is decomposed into two or more relations if decomposition is lossless join as well as dependency preserving. Lossless Join DecompositionIf we decompose a relation R into relations
4 min read
Denormalization in DatabasesDenormalization focuses on combining multiple tables to make queries execute quickly. It adds redundancies in the database though. In this article, weâll explore Denormalization and how it impacts database design. This method can help us to avoid costly joins in a relational database made during nor
6 min read
Transactions and Concurrency Control
Concurrency Control in DBMSIn a database management system (DBMS), allowing transactions to run concurrently has significant advantages, such as better system resource utilization and higher throughput. However, it is crucial that these transactions do not conflict with each other. The ultimate goal is to ensure that the data
7 min read
ACID Properties in DBMSIn the world of DBMS, transactions are fundamental operations that allow us to modify and retrieve data. However, to ensure the integrity of a database, it is important that these transactions are executed in a way that maintains consistency, correctness, and reliability. This is where the ACID prop
8 min read
Implementation of Locking in DBMSLocking protocols are used in database management systems as a means of concurrency control. Multiple transactions may request a lock on a data item simultaneously. Hence, we require a mechanism to manage the locking requests made by transactions. Such a mechanism is called a Lock Manager. It relies
5 min read
Lock Based Concurrency Control Protocol in DBMSIn a DBMS, lock-based concurrency control is a method used to manage how multiple transactions access the same data. This protocol ensures data consistency and integrity when multiple users interact with the database simultaneously.This method uses locks to manage access to data, ensuring transactio
7 min read
Graph Based Concurrency Control Protocol in DBMSIn a Database Management System (DBMS), multiple transactions often run at the same time, which can lead to conflicts when they access the same data. Graph-Based Concurrency Control Protocol helps manage these conflicts and ensures that the database remains consistent.In this protocol, transactions
4 min read
Two Phase Locking ProtocolThe Two-Phase Locking (2PL) Protocol is an essential concept in database management systems used to maintain data consistency and ensure smooth operation when multiple transactions are happening simultaneously. It helps to prevent issues like data conflicts where two or more transactions try to acce
9 min read
Multiple Granularity Locking in DBMSThe various Concurrency Control schemes have used different methods and every individual data item is the unit on which synchronization is performed. A certain drawback of this technique is if a transaction Ti needs to access the entire database, and a locking protocol is used, then Ti must lock eac
5 min read
Polygraph to check View Serializability in DBMSIn a Database Management System (DBMS), ensuring that transactions execute correctly without conflicts is important. One way to check this is through view serializability, which ensures that a schedule produces the same final result as some serial execution of transactions.To check view serializabil
7 min read
Log based Recovery in DBMSLog-based recovery in DBMS ensures data can be maintained or restored in the event of a system failure. The DBMS records every transaction on stable storage, allowing for easy data recovery when a failure occurs. For each operation performed on the database, a log file is created. Transactions are l
10 min read
Timestamp based Concurrency ControlTimestamp-based concurrency control is a method used in database systems to ensure that transactions are executed safely and consistently without conflicts, even when multiple transactions are being processed simultaneously. This approach relies on timestamps to manage and coordinate the execution o
5 min read
Dirty Read in SQLPre-Requisite - Types of Schedules, Transaction Isolation Levels in DBMS A Dirty Read in SQL occurs when a transaction reads data that has been modified by another transaction, but not yet committed. In other words, a transaction reads uncommitted data from another transaction, which can lead to inc
6 min read
Types of Schedules in DBMSSchedule, as the name suggests, is a process of lining the transactions and executing them one by one. When there are multiple transactions that are running in a concurrent manner and the order of operation is needed to be set so that the operations do not overlap each other, Scheduling is brought i
7 min read
Conflict Serializability in DBMSA schedule is a sequence in which operations (read, write, commit, abort) from multiple transactions are executed in a database. Serial or one by one execution of schedules has less resource utilization and low throughput. To improve it, two or more transactions are run concurrently. Conflict Serial
6 min read
Condition of schedules to be View-equivalentIn a database system, a schedule is a sequence of operations (such as read and write operations) performed by transactions in the system. Serial or one by one execution of schedules has less resource utilization and low throughput. To improve it, two or more transactions are run concurrently. View S
6 min read
Recoverability in DBMSRecoverability is a critical feature of database systems that ensures the database can return to a consistent and reliable state after a failure or error. It guarantees that the effects of committed transactions are saved permanently, while uncommitted transactions are rolled back to maintain data i
7 min read
Precedence Graph for Testing Conflict Serializability in DBMSA Precedence Graph or Serialization Graph is used commonly to test the Conflict Serializability of a schedule. It is a directed Graph (V, E) consisting of a set of nodes V = {T1, T2, T3..........Tn} and a set of directed edges E = {e1, e2, e3..................em}. The graph contains one node for eac
6 min read
Database Recovery Techniques in DBMSDatabase Systems like any other computer system, are subject to failures but the data stored in them must be available as and when required. When a database fails it must possess the facilities for fast recovery. It must also have atomicity i.e. either transactions are completed successfully and com
11 min read
Starvation in DBMSStarvation in DBMS is a problem that happens when some processes are unable to get the resources they need because other processes keep getting priority. This can happen in situations like locking or scheduling, where some processes keep getting the resources first, leaving others waiting indefinite
8 min read
Deadlock in DBMSIn database management systems (DBMS) a deadlock occurs when two or more transactions are unable to the proceed because each transaction is waiting for the other to the release locks on resources. This situation creates a cycle of the dependencies where no transaction can continue leading to the sta
10 min read
Types of Schedules Based on Recoverability in DBMSIn a Database Management System (DBMS), multiple transactions often run at the same time, and their execution order is called a schedule. It is important to ensure that these schedules do not cause data loss or inconsistencies, especially if a failure occurs.A recoverable schedule allows the system
4 min read
Why recovery is needed in DBMSBasically, whenever a transaction is submitted to a DBMS for execution, the operating system is responsible for making sure or to be confirmed that all the operations which need to be performed in the transaction have been completed successfully and their effect is either recorded in the database or
6 min read
Indexing, B and B+ trees
Indexing in Databases - Set 1Indexing is a crucial technique used in databases to optimize data retrieval operations. It improves query performance by minimizing disk I/O operations, thus reducing the time it takes to locate and access data. Essentially, indexing allows the database management system (DBMS) to locate data more
8 min read
Introduction of B-TreeA B-Tree is a specialized m-way tree designed to optimize data access, especially on disk-based storage systems. In a B-Tree of order m, each node can have up to m children and m-1 keys, allowing it to efficiently manage large datasets.The value of m is decided based on disk block and key sizes.One
8 min read
Insert Operation in B-TreeIn this post, we'll discuss the insert() operation in a B-Tree. A new key is always inserted into a leaf node. To insert a key k, we start from the root and traverse down the tree until we reach the appropriate leaf node. Once there, the key is added to the leaf.Unlike Binary Search Trees (BSTs), no
15+ min read
Delete Operation in B-TreeA B Tree is a type of data structure commonly known as a Balanced Tree that stores multiple data items very easily. B Trees are one of the most useful data structures that provide ordered access to the data in the database. In this article, we will see the delete operation in the B-Tree. B-Trees are
15+ min read
Introduction of B+ TreeB + Tree is a variation of the B-tree data structure. In a B + tree, data pointers are stored only at the leaf nodes of the tree. In this tree, structure of a leaf node differs from the structure of internal nodes. The leaf nodes have an entry for every value of the search field, along with a data p
8 min read
Bitmap Indexing in DBMSBitmap Indexing is a data indexing technique used in database management systems (DBMS) to improve the performance of read-only queries that involve large datasets. It involves creating a bitmap index, which is a data structure that represents the presence or absence of data values in a table or col
8 min read
Inverted IndexAn Inverted Index is a data structure used in information retrieval systems to efficiently retrieve documents or web pages containing a specific term or set of terms. In an inverted index, the index is organized by terms (words), and each term points to a list of documents or web pages that contain
7 min read
Difference between Inverted Index and Forward IndexInverted Index It is a data structure that stores mapping from words to documents or set of documents i.e. directs you from word to document.Steps to build Inverted index are:Fetch the document and gather all the words.Check for each word, if it is present then add reference of document to index els
2 min read
SQL Queries on Clustered and Non-Clustered IndexesIndexes in SQL play a pivotal role in enhancing database performance by enabling efficient data retrieval without scanning the entire table. The two primary types of indexes Clustered Index and Non-Clustered Index serve distinct purposes in optimizing query performance. In this article, we will expl
7 min read
File organization