Implementation of Vernam Cipher or One Time Pad Algorithm
Last Updated :
30 Oct, 2023
One Time Pad algorithm is the improvement of the Vernam Cipher, proposed by An Army Signal Corp officer, Joseph Mauborgne. It is the only available algorithm that is unbreakable(completely secure). It is a method of encrypting alphabetic plain text. It is one of the Substitution techniques which converts plain text into ciphertext. In this mechanism, we assign a number to each character of the Plain-Text.
The two requirements for the One-Time pad are
- The key should be randomly generated as long as the size of the message.
- The key is to be used to encrypt and decrypt a single message, and then it is discarded.
So encrypting every new message requires a new key of the same length as the new message in one-time pad.
The ciphertext generated by the One-Time pad is random, so it does not have any statistical relation with the plain text.
The assignment is as follows:
A | B | C | D | E | F | G | H | I | J |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
K | L | M | N | O | P | Q | R | S | T |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
U | V | W | X | Y | Z |
20 | 21 | 22 | 23 | 24 | 25 |
The relation between the key and plain text: In this algorithm, the length of the key should be equal to that of plain text.
Examples:
Input: Message = HELLO, Key = MONEY Output: Cipher - TSYPM, Message - HELLO Explanation: Part 1: Plain text to Ciphertext Plain text — H E L L O ? 7 4 11 11 14 Key — M O N E Y ? 12 14 13 4 24 Plain text + key ? 19 18 24 15 38 ? 19 18 24 15 12 (= 38 – 26) Cipher Text ? T S Y P M Part 2: Ciphertext to Message Cipher Text — T S Y P M ? 19 18 24 15 12 Key — M O N E Y? 12 14 13 4 24 Cipher text - key ? 7 4 11 11 -12 ? 7 4 11 11 14 Message ? H E L L O Input: Message = SAVE, Key = LIFE Output: Cipher - DIAI Message - SAVE
Security of One-Time Pad
- If any way cryptanalyst finds these two keys using which two plaintext are produced but if the key was produced randomly, then the cryptanalyst cannot find which key is more likely than the other. In fact, for any plaintext as the size of ciphertext, a key exists that produces that plaintext.
- So if a cryptanalyst tries the brute force attack(try using all possible keys), he would end up with many legitimate plaintexts, with no way of knowing which plaintext is legitimate. Therefore, the code is unbreakable.
- The security of the one-time pad entirely depends on the randomness of the key. If the characters of the key are truly random, then the characters of the ciphertext will be truly random. Thus, there are no patterns or regularities that a cryptanalyst can use to attack the ciphertext.
Advantages
- One-Time Pad is the only algorithm that is truly unbreakable and can be used for low-bandwidth channels requiring very high security(ex. for military uses).
Disadvantages
- There is the practical problem of making large quantities of random keys. Any heavily used system might require millions of random characters on a regular basis.
- For every message to be sent, a key of equal length is needed by both sender and receiver. Thus, a mammoth key distribution problem exists.
Below is the implementation of the Vernam Cipher:
C++
// C++ program Implementing One Time Pad Algorithm
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
// Method 1
// Returning encrypted text
string stringEncryption(string text, string key)
{
// Initializing cipherText
string cipherText = "";
// Initialize cipher array of key length
// which stores the sum of corresponding no.'s
// of plainText and key.
int cipher[key.length()];
for (int i = 0; i < key.length(); i++) {
cipher[i] = text.at(i) - 'A' + key.at(i) - 'A';
}
// If the sum is greater than 25
// subtract 26 from it
// and store that resulting value
for (int i = 0; i < key.length(); i++) {
if (cipher[i] > 25) {
cipher[i] = cipher[i] - 26;
}
}
// Converting the no.'s into integers
// Convert these integers to corresponding
// characters and add them up to cipherText
for (int i = 0; i < key.length(); i++) {
int x = cipher[i] + 'A';
cipherText += (char)x;
}
// Returning the cipherText
return cipherText;
}
// Method 2
// Returning plain text
static string stringDecryption(string s, string key)
{
// Initializing plain text
string plainText = "";
// Initializing integer array of key length
// which stores difference
// of corresponding no.'s of
// each character of cipherText and key
int plain[key.length()];
// Running for loop for each character
// subtracting and storing in the array
for (int i = 0; i < key.length(); i++) {
plain[i] = s.at(i) - 'A' - (key.at(i) - 'A');
}
// If the difference is less than 0
// add 26 and store it in the array.
for (int i = 0; i < key.length(); i++) {
if (plain[i] < 0) {
plain[i] = plain[i] + 26;
}
}
// Converting int to corresponding char
// add them up to plainText
for (int i = 0; i < key.length(); i++) {
int x = plain[i] + 'A';
plainText += (char)x;
}
// Returning plainText
return plainText;
}
// Method 3
// Main driver method
int main()
{
// Declaring plain text
string plainText = "Hello";
// Declaring key
string key = "MONEY";
// Converting plain text to toUpperCase
// function call to stringEncryption
// with plainText and key as parameters
for (int i = 0; i < plainText.length(); i++) {
// convert plaintext to uppercase
plainText[i] = toupper(plainText[i]);
}
for (int i = 0; i < key.length(); i++) {
// convert key to uppercase
key[i] = toupper(key[i]);
}
string encryptedText = stringEncryption(plainText, key);
// Printing cipher Text
cout << "Cipher Text - " << encryptedText << endl;
// Calling above method to stringDecryption
// with encryptedText and key as parameters
cout << "Message - "
<< stringDecryption(encryptedText, key);
return 0;
}
// This code was contributed by Pranay Arora
Java
// Java program Implementing One Time Pad Algorithm
// Importing required classes
import java.io.*;
// Main class
public class GFG {
// Method 1
// Returning encrypted text
public static String stringEncryption(String text,
String key)
{
// Initializing cipherText
String cipherText = "";
// Initialize cipher array of key length
// which stores the sum of corresponding no.'s
// of plainText and key.
int cipher[] = new int[key.length()];
for (int i = 0; i < key.length(); i++) {
cipher[i] = text.charAt(i) - 'A'
+ key.charAt(i)
- 'A';
}
// If the sum is greater than 25
// subtract 26 from it
// and store that resulting value
for (int i = 0; i < key.length(); i++) {
if (cipher[i] > 25) {
cipher[i] = cipher[i] - 26;
}
}
// Converting the no.'s into integers
// Convert these integers to corresponding
// characters and add them up to cipherText
for (int i = 0; i < key.length(); i++) {
int x = cipher[i] + 'A';
cipherText += (char)x;
}
// Returning the cipherText
return cipherText;
}
// Method 2
// Returning plain text
public static String stringDecryption(String s,
String key)
{
// Initializing plain text
String plainText = "";
// Initializing integer array of key length
// which stores difference
// of corresponding no.'s of
// each character of cipherText and key
int plain[] = new int[key.length()];
// Running for loop for each character
// subtracting and storing in the array
for (int i = 0; i < key.length(); i++) {
plain[i]
= s.charAt(i) - 'A'
- (key.charAt(i) - 'A');
}
// If the difference is less than 0
// add 26 and store it in the array.
for (int i = 0; i < key.length(); i++) {
if (plain[i] < 0) {
plain[i] = plain[i] + 26;
}
}
// Converting int to corresponding char
// add them up to plainText
for (int i = 0; i < key.length(); i++) {
int x = plain[i] + 'A';
plainText += (char)x;
}
// Returning plainText
return plainText;
}
// Method 3
// Main driver method
public static void main(String[] args)
{
// Declaring plain text
String plainText = "Hello";
// Declaring key
String key = "MONEY";
// Converting plain text to toUpperCase
// function call to stringEncryption
// with plainText and key as parameters
String encryptedText = stringEncryption(
plainText.toUpperCase(), key.toUpperCase());
// Printing cipher Text
System.out.println("Cipher Text - "
+ encryptedText);
// Calling above method to stringDecryption
// with encryptedText and key as parameters
System.out.println(
"Message - "
+ stringDecryption(encryptedText,
key.toUpperCase()));
}
}
Python3
# Python program Implementing One Time Pad Algorithm
# Importing required classes
# Method 1
# Returning encrypted text
def stringEncryption(text, key):
# Initializing cipherText
cipherText = ""
# Initialize cipher array of key length
# which stores the sum of corresponding no.'s
# of plainText and key.
cipher = []
for i in range(len(key)):
cipher.append(ord(text[i]) - ord('A') + ord(key[i])-ord('A'))
# If the sum is greater than 25
# subtract 26 from it
# and store that resulting value
for i in range(len(key)):
if cipher[i] > 25:
cipher[i] = cipher[i] - 26
# Converting the no.'s into integers
# Convert these integers to corresponding
# characters and add them up to cipherText
for i in range(len(key)):
x = cipher[i] + ord('A')
cipherText += chr(x)
# Returning the cipherText
return cipherText
# Method 2
# Returning plain text
def stringDecryption(s, key):
# Initializing plain text
plainText = ""
# Initializing integer array of key length
# which stores difference
# of corresponding no.'s of
# each character of cipherText and key
plain = []
# Running for loop for each character
# subtracting and storing in the array
for i in range(len(key)):
plain.append(ord(s[i]) - ord('A') - (ord(key[i]) - ord('A')))
# If the difference is less than 0
# add 26 and store it in the array.
for i in range(len(key)):
if (plain[i] < 0):
plain[i] = plain[i] + 26
# Converting int to corresponding char
# add them up to plainText
for i in range(len(key)):
x = plain[i] + ord('A')
plainText += chr(x)
# Returning plainText
return plainText
plainText = "Hello"
# Declaring key
key = "MONEY"
# Converting plain text to toUpperCase
# function call to stringEncryption
# with plainText and key as parameters
encryptedText = stringEncryption(plainText.upper(), key.upper())
# Printing cipher Text
print("Cipher Text - " + encryptedText)
# Calling above method to stringDecryption
# with encryptedText and key as parameters
print("Message - " + stringDecryption(encryptedText, key.upper()))
# This code is contributed by Pranay Arora
C#
// C# program Implementing One Time Pad Algorithm
using System;
public class GFG {
public static String stringEncryption(String text,
String key)
{
// Initializing cipherText
String cipherText = "";
// Initialize cipher array of key length
// which stores the sum of corresponding no.'s
// of plainText and key.
int[] cipher = new int[key.Length];
for (int i = 0; i < key.Length; i++) {
cipher[i] = text[i] - 'A' + key[i] - 'A';
}
// If the sum is greater than 25
// subtract 26 from it
// and store that resulting value
for (int i = 0; i < key.Length; i++) {
if (cipher[i] > 25) {
cipher[i] = cipher[i] - 26;
}
}
// Converting the no.'s into integers
// Convert these integers to corresponding
// characters and add them up to cipherText
for (int i = 0; i < key.Length; i++) {
int x = cipher[i] + 'A';
cipherText += (char)x;
}
// Returning the cipherText
return cipherText;
}
// Method 2
// Returning plain text
public static String stringDecryption(String s,
String key)
{
// Initializing plain text
String plainText = "";
// Initializing integer array of key length
// which stores difference
// of corresponding no.'s of
// each character of cipherText and key
int[] plain = new int[key.Length];
// Running for loop for each character
// subtracting and storing in the array
for (int i = 0; i < key.Length; i++) {
plain[i] = s[i] - 'A' - (key[i] - 'A');
}
// If the difference is less than 0
// add 26 and store it in the array.
for (int i = 0; i < key.Length; i++) {
if (plain[i] < 0) {
plain[i] = plain[i] + 26;
}
}
// Converting int to corresponding char
// add them up to plainText
for (int i = 0; i < key.Length; i++) {
int x = plain[i] + 'A';
plainText += (char)x;
}
// Returning plainText
return plainText;
}
// Method 3
// Main driver method
static void Main()
{
// Declaring plain text
String plainText = "Hello";
// Declaring key
String key = "MONEY";
// Converting plain text to toUpperCase
// function call to stringEncryption
// with plainText and key as parameters
String encryptedText = stringEncryption(
plainText.ToUpper(), key.ToUpper());
// Printing cipher Text
Console.WriteLine("Cipher Text - " + encryptedText);
// Calling above method to stringDecryption
// with encryptedText and key as parameters
Console.WriteLine(
"Message - "
+ stringDecryption(encryptedText,
key.ToUpper()));
}
}
// This code is contributed by Pranay Arora
JavaScript
// Method 1
// Returning encrypted text
function stringEncryption(text, key) {
// Initializing cipherText
let cipherText = "";
// Initialize cipher array of key length
// which stores the sum of corresponding no.'s
// of plainText and key.
let cipher = [];
for (let i = 0; i < key.length; i++) {
cipher[i] = text.charCodeAt(i) - 'A'.charCodeAt(0) + key.charCodeAt(i) - 'A'.charCodeAt(0);
}
// If the sum is greater than 25
// subtract 26 from it
// and store that resulting value
for (let i = 0; i < key.length; i++) {
if (cipher[i] > 25) {
cipher[i] = cipher[i] - 26;
}
}
// Converting the no.'s into integers
// Convert these integers to corresponding
// characters and add them up to cipherText
for (let i = 0; i < key.length; i++) {
let x = cipher[i] + 'A'.charCodeAt(0);
cipherText += String.fromCharCode(x);
}
// Returning the cipherText
return cipherText;
}
// Method 2
// Returning plain text
function stringDecryption(s, key) {
// Initializing plain text
let plainText = "";
// Initializing integer array of key length
// which stores difference
// of corresponding no.'s of
// each character of cipherText and key
let plain = [];
// Running for loop for each character
// subtracting and storing in the array
for (let i = 0; i < key.length; i++) {
plain[i] = s.charCodeAt(i) - 'A'.charCodeAt(0) - (key.charCodeAt(i) - 'A'.charCodeAt(0));
}
// If the difference is less than 0
// add 26 and store it in the array.
for (let i = 0; i < key.length; i++) {
if (plain[i] < 0) {
plain[i] = plain[i] + 26;
}
}
// Converting int to corresponding char
// add them up to plainText
for (let i = 0; i < key.length; i++) {
let x = plain[i] + 'A'.charCodeAt(0);
plainText += String.fromCharCode(x);
}
// Returning plainText
return plainText;
}
// Method 3
// Main driver method
function main() {
// Declaring plain text
let plainText = "Hello";
// Declaring key
let key = "MONEY";
// Converting plain text to toUpperCase
// function call to stringEncryption
// with plainText and key as parameters
plainText = plainText.toUpperCase();
key = key.toUpperCase();
let encryptedText = stringEncryption(plainText, key);
// Printing cipher Text
console.log("Cipher Text - " + encryptedText);
// Calling above method to stringDecryption
// with encryptedText and key as parameters
console.log("Message - " + stringDecryption(encryptedText, key));
}
// Call the main function
main();
OutputCipher Text - TSYPM
Message - HELLO
Time Complexity: O(N)
Space Complexity: O(N)
Similar Reads
Implementation of Rabin Karp Algorithm in C++ The Rabin-Karp Algorithm is a string-searching algorithm that efficiently finds a pattern within a text using hashing. It is particularly useful for finding multiple patterns in the same text or for searching in streams of data. In this article, we will learn how to implement the Rabin-Karp Algorith
5 min read
Implementation of RC4 algorithm RC4 is a symmetric stream cipher and variable key length algorithm. This symmetric key algorithm is used identically for encryption and decryption such that the data stream is simply XORed with the generated key sequence. The algorithm is serial as it requires successive exchanges of state entries b
15+ min read
Implementation of Affine Cipher The Affine cipher is a type of monoalphabetic substitution cipher, wherein each letter in an alphabet is mapped to its numeric equivalent, encrypted using a simple mathematical function, and converted back to a letter. The formula used means that each letter encrypts to one other letter, and back ag
10 min read
Bitwise Algorithms - Intermediate Practice Problems Bitwise operations are fundamental to computer programming and problem-solving. At the intermediate level, you'll explore more complex bitwise algorithms and techniques to solve a variety of coding challenges. This includes topics like bit manipulation, number theory, and optimization using bitwise
7 min read
Implementing Atbash Cipher Definition: Atbash cipher is a substitution cipher with just one specific key where all the letters are reversed that is A to Z and Z to A. It was originally used to encode the Hebrew alphabets but it can be modified to encode any alphabet. Relationship to Affine: Atbash cipher can be thought of as
7 min read
Rabin-Karp algorithm for Pattern Searching in Matrix Given the 2-d matrices txt[][] of order n1 * m1 and pat[][] of order n2 * m2. The task is to find the indices of matrix txt[][] where the matrix pat[][] is present.Examples: Input: txt[][] = [ [ G, H, I, P ], [ J, K, L, Q ], [ R, G, H, I ], [ S, J, K, L ] ] pat[][] = [ [ G, H, I ], [ J, K, L ] ]Outp
15+ min read
Morse Code Implementation Morse code is a method of transmitting text information as a series of on-off tones, lights, or clicks that can be directly understood by a skilled listener or observer without special equipment. It is named for Samuel F. B. Morse, an inventor of the telegraph. The algorithm is very simple. Every ch
9 min read
Simplified International Data Encryption Algorithm (IDEA) The International Data Encryption Algorithm (IDEA) is a symmetric-key block cipher that was first introduced in 1991. It was designed to provide secure encryption for digital data and is used in a variety of applications, such as secure communications, financial transactions, and electronic voting s
10 min read
Twofish Encryption Algorithm When it comes to data protection, encryption methods act as our buffering agents. One example of an excellent block cipher is the Twofish encryption algorithm. Although it was a competitor of another block cipher in the Advanced Encryption Standard competition and was later succeeded by the latter,
6 min read
Implement Secure Hashing Algorithm - 512 ( SHA-512 ) as Functional Programming Paradigm Given a string S of length N, the task is to find the SHA-512 Hash Value of the given string S. Examples: Input: S = "GeeksforGeeks"Output: acc10c4e0b38617f59e88e49215e2e894afaee5ec948c2af6f44039f03c9fe47a9210e01d5cd926c142bdc9179c2ad30f927a8faf69421ff60a5eaddcf8cb9c Input: S = "hello world"Output:3
15 min read