How to use Summary Function in R?
Last Updated :
16 Apr, 2025
The summary()
function provides a quick statistical overview of a given dataset or vector. When applied to numeric data, it returns the following key summary statistics:
- Min: The minimum value in the data
- 1st Qu: The first quartile (25th percentile)
- Median: The middle value (50th percentile)
- 3rd Qu: The third quartile (75th percentile)
- Max: The maximum value in the data
Syntax:
summary(data)
Where, data can be a vector, dataframe, etc. In this article, we will explore the summary()
function in the R programming language.
Using summary() with Vector
Here we are going to create a vector with some elements and get the summary statistics using the summary() function.
R
data = c(1: 5, 56, 43, 56, 78, 51)
print(data)
print(summary(data))
Output:

Using summary() with DataFrame
Here we are going to get the summary of all columns in the dataframe.
R
data = data.frame(col1=c(1: 5, 56, 43, 56, 78, 51),
col2=c(100: 104, 56, 43, 56, 78, 51),
col3=c(1: 5, 34, 56, 78, 76, 79))
print(data)
print(summary(data))
Output:

Using summary() with Specific DataFrame Columns
Here we can get summary of particular columns of the dataframe.
Syntax:
summary(dataframe[c 1="'column2',..,column" 2="n)" language="('column1',"][/c])
R
data = data.frame(col1=c(1: 5, 56, 43, 56, 78, 51),
col2=c(100: 104, 56, 43, 56, 78, 51),
col3=c(1: 5, 34, 56, 78, 76, 79))
print(data)
print(summary(data[c('col1', 'col3')]))
Output:

Using summary() with Regression Model
Here we can also calculate summary() for linear regression model. We can create an linear regression model for dataframe columns using lm() function.
Syntax:
summary(lm(column1~column2, dataframe))
R
data = data.frame(col1=c(1: 5, 56, 43, 56, 78, 51),
col2=c(100: 104, 56, 43, 56, 78, 51))
reg = lm(col1~col2, data)
summary(reg)
Output:

Using summary() with ANOVA Model
Here aov() is used to create ANOVA (Analysis of Variance) model which stands for analysis of variance.
Syntax:
summary(aov(col1 ~ col2, data))
Example:
R
data = data.frame(col1=c(1: 5, 56, 43, 56, 78, 51),
col2=c(100: 104, 56, 43, 56, 78, 51))
reg = aov(col1 ~ col2, data)
summary(reg)
Output:
