How to create Pandas DataFrame from nested XML?
Last Updated :
28 Apr, 2021
In this article, we will learn how to create Pandas DataFrame from nested XML. We will use the xml.etree.ElementTree module, which is a built-in module in Python for parsing or reading information from the XML file. The ElementTree represents the XML document as a tree and the Element represents only a single node of the tree.
Functions Used:
Here, we will use some functions to process out code which is stated below:
- ElementTree.parse( XML_file) : To read data from an XML file
- root.iter('root_name'): To iterate through the branches of the root node
- ElementTree.fromstring(XML_file) : To read data when XML code which is passed as a string inside triple quotes in the python code
- prstree.findall('store'): To find all the elements of the parsed XML ElementTree
- node.attribute.get(attribte_name ): To get the attribute
- node.find(attribte_name): To retrieve the text content of the mentioned attribute_name
- pandas.DataFrame() : To convert the XML data to a DataFrame
- list.append(): To append the items to a list
Approach
- Parse or read the XML file using ElementTree.parse( ) function and get the root element.
- Iterate through the root node to get the child nodes attributes 'SL NO' (here) and extract the text values of each attribute (here foodItem, price, quantity, and discount).
- Get the respective food items with specifications as a unit appended to a list(here all_items() list).
- Convert the list into a DataFrame using pandas.DataFrame() function and mention the column names within quotes separated by commas.
- Print the DataFrame and it's done.
Input Nested XML Data
XML
<?xml version="1.0" encoding="UTF-8"?>
<Food>
<Info>
<Msg>Food Store items.</Msg>
</Info>
<store slNo="1">
<foodItem>meat</foodItem>
<price>200</price>
<quantity>1kg</quantity>
<discount>7%</discount>
</store>
<store slNo="2">
<foodItem>fish</foodItem>
<price>150</price>
<quantity>1kg</quantity>
<discount>5%</discount>
</store>
<store slNo="3">
<foodItem>egg</foodItem>
<price>100</price>
<quantity>50 pieces</quantity>
<discount>5%</discount>
</store>
<store slNo="4">
<foodItem>milk</foodItem>
<price>50</price>
<quantity>1 litre</quantity>
<discount>3%</discount>
</store>
</Food>
Example 1:
In this code below we have parsed the XML file. Give the complete path where you have saved the XML file within quotes. So here we need to use ElementTree.parse() function to read the data from the XML file and then the getroot() function to get the root. Then follow the steps given.
Python3
import xml.etree.ElementTree as ETree
import pandas as pd
# give the path where you saved the xml file
# inside the quotes
xmldata = "C: \\ProgramData\\Microsoft\\
Windows\\Start Menu\\Programs\\
Anaconda3(64-bit)\\xmltopandas.xml"
prstree = ETree.parse(xmldata)
root = prstree.getroot()
# print(root)
store_items = []
all_items = []
for storeno in root.iter('store'):
store_Nr = storeno.attrib.get('slNo')
itemsF = storeno.find('foodItem').text
price = storeno.find('price').text
quan = storeno.find('quantity').text
dis = storeno.find('discount').text
store_items = [store_Nr, itemsF, price, quan, dis]
all_items.append(store_items)
xmlToDf = pd.DataFrame(all_items, columns=[
'SL No', 'ITEM_NUMBER', 'PRICE', 'QUANTITY', 'DISCOUNT'])
print(xmlToDf.to_string(index=False))
Output:
Note: The XML file should be saved in the same directory or folder where your Python code saved.
Example 2:
We can also pass the XML content as a string inside triple quotes. In that case, we need to use the fromstring() function to read the string. Get the root using the 'tag' object and follow the same steps to convert it to a DataFrame as mentioned above.
Python3
import xml.etree.ElementTree as ETree
import pandas as pd
xmldata = '''<?xml version="1.0" encoding="UTF-8"?>
<Food>
<Info>
<Msg>Food Store items.</Msg>
</Info>
<store slNo="1">
<foodItem>meat</foodItem>
<price>200</price>
<quantity>1kg</quantity>
<discount>7%</discount>
</store>
<store slNo="2">
<foodItem>fish</foodItem>
<price>150</price>
<quantity>1kg</quantity>
<discount>5%</discount>
</store>
<store slNo="3">
<foodItem>egg</foodItem>
<price>100</price>
<quantity>50 pieces</quantity>
<discount>5%</discount>
</store>
<store slNo="4">
<foodItem>milk</foodItem>
<price>50</price>
<quantity>1 litre</quantity>
<discount>3%</discount>
</store>
</Food>
'''
prstree = ETree.fromstring(xmldata)
root = prstree.tag
#print(root)
store_items = []
all_items = []
for storeno in prstree.findall('store'):
store_Nr = storeno.attrib.get('slNo')
itemsF= storeno.find('foodItem').text
price= storeno.find('price').text
quan= storeno.find('quantity').text
dis= storeno.find('discount').text
store_items = [store_Nr,itemsF,price,quan,dis]
all_items.append(store_items)
xmlToDf = pd.DataFrame(all_items,columns=[
'SL No','ITEM_NUMBER','PRICE','QUANTITY','DISCOUNT'])
print(xmlToDf.to_string(index=False))
Output:
Similar Reads
How To Convert Pandas Dataframe To Nested Dictionary In this article, we will learn how to convert Pandas DataFrame to Nested Dictionary. Convert Pandas Dataframe To Nested DictionaryConverting a Pandas DataFrame to a nested dictionary involves organizing the data in a hierarchical structure based on specific columns. In Python's Pandas library, we ca
2 min read
Create a Pandas DataFrame from Lists Converting lists to DataFrames is crucial in data analysis, Pandas enabling you to perform sophisticated data manipulations and analyses with ease. List to Dataframe Example# Simple listdata = [1, 2, 3, 4, 5]# Convert to DataFramedf = pd.DataFrame(data, columns=['Numbers'])Here we will discuss diffe
5 min read
How to create DataFrame from dictionary in Python-Pandas? The task of converting a dictionary into a Pandas DataFrame involves transforming a dictionary into a structured, tabular format where keys represent column names or row indexes and values represent the corresponding data.Using Default ConstructorThis is the simplest method where a dictionary is dir
3 min read
Create a list from rows in Pandas DataFrame | Set 2 In an earlier post, we had discussed some approaches to extract the rows of the dataframe as a Python's list. In this post, we will see some more methods to achieve that goal. Note : For link to the CSV file used in the code, click here. Solution #1: In order to access the data of each row of the Pa
2 min read
Different ways to create Pandas Dataframe It is the most commonly used Pandas object. The pd.DataFrame() function is used to create a DataFrame in Pandas. There are several ways to create a Pandas Dataframe in Python.Example: Creating a DataFrame from a DictionaryPythonimport pandas as pd # initialize data of lists. data = {'Name': ['Tom',
7 min read