Open In App

Graph and its representations

Last Updated : 05 Oct, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

A Graph is a non-linear data structure consisting of vertices and edges. The vertices are sometimes also referred to as nodes and the edges are lines or arcs that connect any two nodes in the graph. More formally a Graph is composed of a set of vertices( V ) and a set of edges( E ). The graph is denoted by G(V, E).

Representations of Graph

Here are the two most common ways to represent a graph : For simplicity, we are going to consider only unweighted graphs in this post.

  1. Adjacency Matrix
  2. Adjacency List

Adjacency Matrix Representation

An adjacency matrix is a way of representing a graph as a matrix of boolean (0's and 1's)

Let's assume there are n vertices in the graph So, create a 2D matrix adjMat[n][n] having dimension n x n.

  • If there is an edge from vertex i to j, mark adjMat[i][j] as 1.
  • If there is no edge from vertex i to j, mark adjMat[i][j] as 0.

Representation of Undirected Graph as Adjacency Matrix:

The below figure shows an undirected graph. Initially, the entire Matrix is ​​initialized to 0. If there is an edge from source to destination, we insert 1 to both cases (adjMat[source][destination] and adjMat[destination][source]) because we can go either way.

Undirected_to_Adjacency_matrix
Undirected Graph to Adjacency Matrix
C++
// C++ program to demonstrate Adjacency Matrix
// representation of undirected and unweighted graph
#include <bits/stdc++.h>
using namespace std;

void addEdge(vector<vector<int>> &mat, int i, int j)
{
    mat[i][j] = 1;
    mat[j][i] = 1; // Since the graph is undirected
}

void displayMatrix(vector<vector<int>> &mat)
{
    int V = mat.size();
    for (int i = 0; i < V; i++)
    {
        for (int j = 0; j < V; j++)
            cout << mat[i][j] << " ";
        cout << endl;
    }
}

int main()
{

    // Create a graph with 4 vertices and no edges
    // Note that all values are initialized as 0
    int V = 4;
    vector<vector<int>> mat(V, vector<int>(V, 0));

    // Now add edges one by one
    addEdge(mat, 0, 1);
    addEdge(mat, 0, 2);
    addEdge(mat, 1, 2);
    addEdge(mat, 2, 3);

    /* Alternatively we can also create using below
       code if we know all edges in advacem

     vector<vector<int>> mat = {{ 0, 1, 0, 0 },
                               { 1, 0, 1, 0 },
                               { 0, 1, 0, 1 },
                               { 0, 0, 1, 0 } }; */

    cout << "Adjacency Matrix Representation" << endl;
    displayMatrix(mat);

    return 0;
}
C
#include<stdio.h>

#define V 4

void addEdge(int mat[V][V], int i, int j) {
    mat[i][j] = 1;
    mat[j][i] = 1; // Since the graph is undirected
}

void displayMatrix(int mat[V][V]) {
    for (int i = 0; i < V; i++) {
        for (int j = 0; j < V; j++)
            printf("%d ", mat[i][j]);
        printf("\n");
    }
}

int main() {
    // Create a graph with 4 vertices and no edges
    // Note that all values are initialized as 0
    int mat[V][V] = {0};

    // Now add edges one by one
    addEdge(mat, 0, 1);
    addEdge(mat, 0, 2);
    addEdge(mat, 1, 2);
    addEdge(mat, 2, 3);

    /* Alternatively, we can also create using the below
       code if we know all edges in advance

    int mat[V][V] = {
        {0, 1, 0, 0},
        {1, 0, 1, 0},
        {0, 1, 0, 1},
        {0, 0, 1, 0}
    }; */

    printf("Adjacency Matrix Representation\n");
    displayMatrix(mat);

    return 0;
}
Java
import java.util.Arrays;

public class GfG {

    public static void addEdge(int[][] mat, int i, int j) {
        mat[i][j] = 1;
        mat[j][i] = 1; // Since the graph is undirected
    }

    public static void displayMatrix(int[][] mat) {
        for (int[] row : mat) {
            for (int val : row) {
                System.out.print(val + " ");
            }
            System.out.println();
        }
    }

    public static void main(String[] args) {

        // Create a graph with 4 vertices and no edges
        // Note that all values are initialized as 0
        int V = 4;
        int[][] mat = new int[V][V];

        // Now add edges one by one
        addEdge(mat, 0, 1);
        addEdge(mat, 0, 2);
        addEdge(mat, 1, 2);
        addEdge(mat, 2, 3);

        /* Alternatively we can also create using below
           code if we know all edges in advance

         int[][] mat = {{ 0, 1, 0, 0 },
                        { 1, 0, 1, 0 },
                        { 0, 1, 0, 1 },
                        { 0, 0, 1, 0 } }; */

        System.out.println("Adjacency Matrix Representation");
        displayMatrix(mat);
    }
}
Python
def add_edge(mat, i, j):
  
    # Add an edge between two vertices
    mat[i][j] = 1  # Graph is 
    mat[j][i] = 1  # Undirected

def display_matrix(mat):
  
    # Display the adjacency matrix
    for row in mat:
        print(" ".join(map(str, row)))  

# Main function to run the program
if __name__ == "__main__":
    V = 4  # Number of vertices
    mat = [[0] * V for _ in range(V)]  

    # Add edges to the graph
    add_edge(mat, 0, 1)
    add_edge(mat, 0, 2)
    add_edge(mat, 1, 2)
    add_edge(mat, 2, 3)

    # Optionally, initialize matrix directly
    """
    mat = [
        [0, 1, 0, 0],
        [1, 0, 1, 0],
        [0, 1, 0, 1],
        [0, 0, 1, 0]
    ]
    """

    # Display adjacency matrix
    print("Adjacency Matrix:")
    display_matrix(mat)
C#
using System;

public class GfG
{
    // Add an edge between two vertices
    public static void AddEdge(int[,] mat, int i, int j)
    {
        mat[i, j] = 1; // Since the graph is 
        mat[j, i] = 1; // undirected
    }

    // Display the adjacency matrix
    public static void DisplayMatrix(int[,] mat)
    {
        int V = mat.GetLength(0); 
        for (int i = 0; i < V; i++)
        {
            for (int j = 0; j < V; j++)
            {
                Console.Write(mat[i, j] + " ");
            }
            Console.WriteLine(); 
        }
    }

    // Main method to run the program
    public static void Main(string[] args)
    {
        int V = 4; // Number of vertices
        int[,] mat = new int[V, V]; // Initialize matrix

        // Add edges to the graph
        AddEdge(mat, 0, 1);
        AddEdge(mat, 0, 2);
        AddEdge(mat, 1, 2);
        AddEdge(mat, 2, 3);

        // Optionally, initialize matrix directly
        /*
        int[,] mat = new int[,]
        {
            { 0, 1, 0, 0 },
            { 1, 0, 1, 0 },
            { 0, 1, 0, 1 },
            { 0, 0, 1, 0 }
        };
        */

        // Display adjacency matrix
        Console.WriteLine("Adjacency Matrix:");
        DisplayMatrix(mat);
    }
}
JavaScript
function addEdge(mat, i, j) {
    mat[i][j] = 1; // Graph is 
    mat[j][i] = 1; // undirected
}

function displayMatrix(mat) {
    // Display the adjacency matrix
    for (const row of mat) {
        console.log(row.join(" ")); 
    }
}

// Main function to run the program
const V = 4; // Number of vertices

 // Initialize matrix
let mat = Array.from({ length: V }, () => Array(V).fill(0));

// Add edges to the graph
addEdge(mat, 0, 1);
addEdge(mat, 0, 2);
addEdge(mat, 1, 2);
addEdge(mat, 2, 3);

/* Optionally, initialize matrix directly
let mat = [
    [0, 1, 0, 0],
    [1, 0, 1, 0],
    [0, 1, 0, 1],
    [0, 0, 1, 0]
];
*/

// Display adjacency matrix
console.log("Adjacency Matrix:");
displayMatrix(mat);

Output
Adjacency Matrix Representation
0 1 1 0 
1 0 1 0 
1 1 0 1 
0 0 1 0 

Representation of Directed Graph as Adjacency Matrix:

The below figure shows a directed graph. Initially, the entire Matrix is ​​initialized to 0. If there is an edge from source to destination, we insert 1 for that particular adjMat[source][destination].

Directed_to_Adjacency_matrix
Directed Graph to Adjacency Matrix

Adjacency List Representation

An array of Lists is used to store edges between two vertices. The size of array is equal to the number of vertices (i.e, n). Each index in this array represents a specific vertex in the graph. The entry at the index i of the array contains a linked list containing the vertices that are adjacent to vertex i.

Let's assume there are n vertices in the graph So, create an array of list of size n as adjList[n].

  • adjList[0] will have all the nodes which are connected (neighbour) to vertex 0.
  • adjList[1] will have all the nodes which are connected (neighbour) to vertex 1 and so on.

Representation of Undirected Graph as Adjacency list:

The below undirected graph has 3 vertices. So, an array of list will be created of size 3, where each indices represent the vertices. Now, vertex 0 has two neighbours (i.e, 1 and 2). So, insert vertex 1 and 2 at indices 0 of array. Similarly, For vertex 1, it has two neighbour (i.e, 2 and 0) So, insert vertices 2 and 0 at indices 1 of array. Similarly, for vertex 2, insert its neighbours in array of list.

Graph-Representation-of-Undirected-graph-to-Adjacency-List
Undirected Graph to Adjacency list
C++
#include <iostream>
#include <vector>
using namespace std;

// Function to add an edge between two vertices
void addEdge(vector<vector<int>>& adj, int i, int j) {
    adj[i].push_back(j);
    adj[j].push_back(i); // Undirected
}

// Function to display the adjacency list
void displayAdjList(const vector<vector<int>>& adj) {
    for (int i = 0; i < adj.size(); i++) {
        cout << i << ": "; // Print the vertex
        for (int j : adj[i]) {
            cout << j << " "; // Print its adjacent
        }
        cout << endl; 
    }
}

// Main function
int main() {
    // Create a graph with 4 vertices and no edges
    int V = 4;
    vector<vector<int>> adj(V); 

    // Now add edges one by one
    addEdge(adj, 0, 1);
    addEdge(adj, 0, 2);
    addEdge(adj, 1, 2);
    addEdge(adj, 2, 3);

    cout << "Adjacency List Representation:" << endl;
    displayAdjList(adj);

    return 0;
}
C
#include <stdio.h>
#include <stdlib.h>

// Structure for a node in the adjacency list
struct Node {
    int data;
    struct Node* next;
};

// Function to create a new node
struct Node* createNode(int data) {
    struct Node* newNode = 
      (struct Node*)malloc(sizeof(struct Node));
    newNode->data = data;
    newNode->next = NULL;
    return newNode;
}

// Function to add an edge between two vertices
void addEdge(struct Node* adj[], int i, int j) {
    struct Node* newNode = createNode(j);
    newNode->next = adj[i];
    adj[i] = newNode;

    newNode = createNode(i); // For undirected graph
    newNode->next = adj[j];
    adj[j] = newNode;
}

// Function to display the adjacency list
void displayAdjList(struct Node* adj[], int V) {
    for (int i = 0; i < V; i++) {
        printf("%d: ", i); // Print the vertex
        struct Node* temp = adj[i];
        while (temp != NULL) {
            printf("%d ", temp->data); // Print its adjacent
            temp = temp->next;
        }
        printf("\n");
    }
}

// Main function
int main() {
  
    // Create a graph with 4 vertices and no edges
    int V = 4;
    struct Node* adj[V];
    for (int i = 0; i < V; i++) {
        adj[i] = NULL; // Initialize adjacency list
    }

    // Now add edges one by one
    addEdge(adj, 0, 1);
    addEdge(adj, 0, 2);
    addEdge(adj, 1, 2);
    addEdge(adj, 2, 3);

    printf("Adjacency List Representation:\n");
    displayAdjList(adj, V);

    return 0;
}
Java
import java.util.ArrayList;
import java.util.List;

public class GfG {
    
    // Method to add an edge between two vertices
    public static void addEdge(List<List<Integer>> adj, int i, int j) {
        adj.get(i).add(j);
        adj.get(j).add(i); // Undirected
    }

    // Method to display the adjacency list
    public static void displayAdjList(List<List<Integer>> adj) {
        for (int i = 0; i < adj.size(); i++) {
            System.out.print(i + ": "); // Print the vertex
            for (int j : adj.get(i)) {
                System.out.print(j + " "); // Print its adjacent 
            }
            System.out.println(); 
        }
    }

    // Main method
    public static void main(String[] args) {
      
        // Create a graph with 4 vertices and no edges
        int V = 4;
        List<List<Integer>> adj = new ArrayList<>(V); 
        for (int i = 0; i < V; i++) {
            adj.add(new ArrayList<>());
        }

        // Now add edges one by one
        addEdge(adj, 0, 1);
        addEdge(adj, 0, 2);
        addEdge(adj, 1, 2);
        addEdge(adj, 2, 3);

        System.out.println("Adjacency List Representation:");
        displayAdjList(adj);
    }
}
Python
def add_edge(adj, i, j):
    adj[i].append(j)
    adj[j].append(i)  # Undirected

def display_adj_list(adj):
    for i in range(len(adj)):
        print(f"{i}: ", end="")
        for j in adj[i]:
            print(j, end=" ")
        print()

# Create a graph with 4 vertices and no edges
V = 4
adj = [[] for _ in range(V)]

# Now add edges one by one
add_edge(adj, 0, 1)
add_edge(adj, 0, 2)
add_edge(adj, 1, 2)
add_edge(adj, 2, 3)

print("Adjacency List Representation:")
display_adj_list(adj)
C#
using System;
using System.Collections.Generic;

public class GfG
{
    // Method to add an edge between two vertices
    public static void AddEdge(List<List<int>> adj, int i, int j)
    {
        adj[i].Add(j);
        adj[j].Add(i); // Undirected
    }

    // Method to display the adjacency list
    public static void DisplayAdjList(List<List<int>> adj)
    {
        for (int i = 0; i < adj.Count; i++)
        {
            Console.Write($"{i}: "); // Print the vertex
            foreach (int j in adj[i])
            {
                Console.Write($"{j} "); // Print its adjacent
            }
            Console.WriteLine(); 
        }
    }

    // Main method
    public static void Main(string[] args)
    {
        // Create a graph with 4 vertices and no edges
        int V = 4;
        List<List<int>> adj = new List<List<int>>(V); 
        for (int i = 0; i < V; i++)
            adj.Add(new List<int>());

        // Now add edges one by one
        AddEdge(adj, 0, 1);
        AddEdge(adj, 0, 2);
        AddEdge(adj, 1, 2);
        AddEdge(adj, 2, 3);

        Console.WriteLine("Adjacency List Representation:");
        DisplayAdjList(adj);
    }
}
JavaScript
function addEdge(adj, i, j) {
    adj[i].push(j);
    adj[j].push(i); // Undirected
}

function displayAdjList(adj) {
    for (let i = 0; i < adj.length; i++) {
        console.log(`${i}: `); 
        for (const j of adj[i]) {
             console.log(`${j} `); 
        }
        console.log(); 
    }
}

// Create a graph with 4 vertices and no edges
const V = 4;
const adj = Array.from({ length: V }, () => []);

// Now add edges one by one
addEdge(adj, 0, 1);
addEdge(adj, 0, 2);
addEdge(adj, 1, 2);
addEdge(adj, 2, 3);

console.log("Adjacency List Representation:");
displayAdjList(adj);

Output
Adjacency List Representation:
0: 1 2 
1: 0 2 
2: 0 1 3 
3: 2 

Representation of Directed Graph as Adjacency list:

The below directed graph has 3 vertices. So, an array of list will be created of size 3, where each indices represent the vertices. Now, vertex 0 has no neighbours. For vertex 1, it has two neighbour (i.e, 0 and 2) So, insert vertices 0 and 2 at indices 1 of array. Similarly, for vertex 2, insert its neighbours in array of list.

Graph-Representation-of-Directed-graph-to-Adjacency-List
Directed Graph to Adjacency list

Next Article
Article Tags :
Practice Tags :

Similar Reads