Finding optimal move in Tic-Tac-Toe using Minimax Algorithm in Game Theory
Last Updated :
20 Feb, 2023
Prerequisites: Minimax Algorithm in Game Theory, Evaluation Function in Game Theory
Let us combine what we have learnt so far about minimax and evaluation function to write a proper Tic-Tac-Toe AI (Artificial Intelligence) that plays a perfect game. This AI will consider all possible scenarios and makes the most optimal move.
Finding the Best Move :
We shall be introducing a new function called findBestMove(). This function evaluates all the available moves using minimax() and then returns the best move the maximizer can make. The pseudocode is as follows :
function findBestMove(board):
bestMove = NULL
for each move in board :
if current move is better than bestMove
bestMove = current move
return bestMove
Minimax :
To check whether or not the current move is better than the best move we take the help of minimax() function which will consider all the possible ways the game can go and returns the best value for that move, assuming the opponent also plays optimally
The code for the maximizer and minimizer in the minimax() function is similar to findBestMove(), the only difference is, instead of returning a move, it will return a value. Here is the pseudocode :
function minimax(board, depth, isMaximizingPlayer):
if current board state is a terminal state :
return value of the board
if isMaximizingPlayer :
bestVal = -INFINITY
for each move in board :
value = minimax(board, depth+1, false)
bestVal = max( bestVal, value)
return bestVal
else :
bestVal = +INFINITY
for each move in board :
value = minimax(board, depth+1, true)
bestVal = min( bestVal, value)
return bestVal
Checking for GameOver state :
To check whether the game is over and to make sure there are no moves left we use isMovesLeft() function. It is a simple straightforward function which checks whether a move is available or not and returns true or false respectively. Pseudocode is as follows :
function isMovesLeft(board):
for each cell in board:
if current cell is empty:
return true
return false
Making our AI smarter :
One final step is to make our AI a little bit smarter. Even though the following AI plays perfectly, it might choose to make a move which will result in a slower victory or a faster loss. Lets take an example and explain it.
Assume that there are 2 possible ways for X to win the game from a given board state.
- Move A : X can win in 2 move
- Move B : X can win in 4 moves
Our evaluation function will return a value of +10 for both moves A and B. Even though the move A is better because it ensures a faster victory, our AI may choose B sometimes. To overcome this problem we subtract the depth value from the evaluated score. This means that in case of a victory it will choose a the victory which takes least number of moves and in case of a loss it will try to prolong the game and play as many moves as possible. So the new evaluated value will be
- Move A will have a value of +10 – 2 = 8
- Move B will have a value of +10 - 4 = 6
Now since move A has a higher score compared to move B our AI will choose move A over move B. The same thing must be applied to the minimizer. Instead of subtracting the depth we add the depth value as the minimizer always tries to get, as negative a value as possible. We can subtract the depth either inside the evaluation function or outside it. Anywhere is fine. I have chosen to do it outside the function. Pseudocode implementation is as follows.
if maximizer has won:
return WIN_SCORE – depth
else if minimizer has won:
return LOOSE_SCORE + depth
Below is implementation of above idea.
C++
// C++ program to find the next optimal move for
// a player
#include<bits/stdc++.h>
using namespace std;
struct Move
{
int row, col;
};
char player = 'x', opponent = 'o';
// This function returns true if there are moves
// remaining on the board. It returns false if
// there are no moves left to play.
bool isMovesLeft(char board[3][3])
{
for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
if (board[i][j]=='_')
return true;
return false;
}
// This is the evaluation function as discussed
// in the previous article ( http://goo.gl/sJgv68 )
int evaluate(char b[3][3])
{
// Checking for Rows for X or O victory.
for (int row = 0; row<3; row++)
{
if (b[row][0]==b[row][1] &&
b[row][1]==b[row][2])
{
if (b[row][0]==player)
return +10;
else if (b[row][0]==opponent)
return -10;
}
}
// Checking for Columns for X or O victory.
for (int col = 0; col<3; col++)
{
if (b[0][col]==b[1][col] &&
b[1][col]==b[2][col])
{
if (b[0][col]==player)
return +10;
else if (b[0][col]==opponent)
return -10;
}
}
// Checking for Diagonals for X or O victory.
if (b[0][0]==b[1][1] && b[1][1]==b[2][2])
{
if (b[0][0]==player)
return +10;
else if (b[0][0]==opponent)
return -10;
}
if (b[0][2]==b[1][1] && b[1][1]==b[2][0])
{
if (b[0][2]==player)
return +10;
else if (b[0][2]==opponent)
return -10;
}
// Else if none of them have won then return 0
return 0;
}
// This is the minimax function. It considers all
// the possible ways the game can go and returns
// the value of the board
int minimax(char board[3][3], int depth, bool isMax)
{
int score = evaluate(board);
// If Maximizer has won the game return his/her
// evaluated score
if (score == 10)
return score;
// If Minimizer has won the game return his/her
// evaluated score
if (score == -10)
return score;
// If there are no more moves and no winner then
// it is a tie
if (isMovesLeft(board)==false)
return 0;
// If this maximizer's move
if (isMax)
{
int best = -1000;
// Traverse all cells
for (int i = 0; i<3; i++)
{
for (int j = 0; j<3; j++)
{
// Check if cell is empty
if (board[i][j]=='_')
{
// Make the move
board[i][j] = player;
// Call minimax recursively and choose
// the maximum value
best = max( best,
minimax(board, depth+1, !isMax) );
// Undo the move
board[i][j] = '_';
}
}
}
return best;
}
// If this minimizer's move
else
{
int best = 1000;
// Traverse all cells
for (int i = 0; i<3; i++)
{
for (int j = 0; j<3; j++)
{
// Check if cell is empty
if (board[i][j]=='_')
{
// Make the move
board[i][j] = opponent;
// Call minimax recursively and choose
// the minimum value
best = min(best,
minimax(board, depth+1, !isMax));
// Undo the move
board[i][j] = '_';
}
}
}
return best;
}
}
// This will return the best possible move for the player
Move findBestMove(char board[3][3])
{
int bestVal = -1000;
Move bestMove;
bestMove.row = -1;
bestMove.col = -1;
// Traverse all cells, evaluate minimax function for
// all empty cells. And return the cell with optimal
// value.
for (int i = 0; i<3; i++)
{
for (int j = 0; j<3; j++)
{
// Check if cell is empty
if (board[i][j]=='_')
{
// Make the move
board[i][j] = player;
// compute evaluation function for this
// move.
int moveVal = minimax(board, 0, false);
// Undo the move
board[i][j] = '_';
// If the value of the current move is
// more than the best value, then update
// best/
if (moveVal > bestVal)
{
bestMove.row = i;
bestMove.col = j;
bestVal = moveVal;
}
}
}
}
printf("The value of the best Move is : %d\n\n",
bestVal);
return bestMove;
}
// Driver code
int main()
{
char board[3][3] =
{
{ 'x', 'o', 'x' },
{ 'o', 'o', 'x' },
{ '_', '_', '_' }
};
Move bestMove = findBestMove(board);
printf("The Optimal Move is :\n");
printf("ROW: %d COL: %d\n\n", bestMove.row,
bestMove.col );
return 0;
}
Java
// Java program to find the
// next optimal move for a player
class GFG
{
static class Move
{
int row, col;
};
static char player = 'x', opponent = 'o';
// This function returns true if there are moves
// remaining on the board. It returns false if
// there are no moves left to play.
static Boolean isMovesLeft(char board[][])
{
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
if (board[i][j] == '_')
return true;
return false;
}
// This is the evaluation function as discussed
// in the previous article ( http://goo.gl/sJgv68 )
static int evaluate(char b[][])
{
// Checking for Rows for X or O victory.
for (int row = 0; row < 3; row++)
{
if (b[row][0] == b[row][1] &&
b[row][1] == b[row][2])
{
if (b[row][0] == player)
return +10;
else if (b[row][0] == opponent)
return -10;
}
}
// Checking for Columns for X or O victory.
for (int col = 0; col < 3; col++)
{
if (b[0][col] == b[1][col] &&
b[1][col] == b[2][col])
{
if (b[0][col] == player)
return +10;
else if (b[0][col] == opponent)
return -10;
}
}
// Checking for Diagonals for X or O victory.
if (b[0][0] == b[1][1] && b[1][1] == b[2][2])
{
if (b[0][0] == player)
return +10;
else if (b[0][0] == opponent)
return -10;
}
if (b[0][2] == b[1][1] && b[1][1] == b[2][0])
{
if (b[0][2] == player)
return +10;
else if (b[0][2] == opponent)
return -10;
}
// Else if none of them have won then return 0
return 0;
}
// This is the minimax function. It considers all
// the possible ways the game can go and returns
// the value of the board
static int minimax(char board[][],
int depth, Boolean isMax)
{
int score = evaluate(board);
// If Maximizer has won the game
// return his/her evaluated score
if (score == 10)
return score;
// If Minimizer has won the game
// return his/her evaluated score
if (score == -10)
return score;
// If there are no more moves and
// no winner then it is a tie
if (isMovesLeft(board) == false)
return 0;
// If this maximizer's move
if (isMax)
{
int best = -1000;
// Traverse all cells
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
// Check if cell is empty
if (board[i][j]=='_')
{
// Make the move
board[i][j] = player;
// Call minimax recursively and choose
// the maximum value
best = Math.max(best, minimax(board,
depth + 1, !isMax));
// Undo the move
board[i][j] = '_';
}
}
}
return best;
}
// If this minimizer's move
else
{
int best = 1000;
// Traverse all cells
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
// Check if cell is empty
if (board[i][j] == '_')
{
// Make the move
board[i][j] = opponent;
// Call minimax recursively and choose
// the minimum value
best = Math.min(best, minimax(board,
depth + 1, !isMax));
// Undo the move
board[i][j] = '_';
}
}
}
return best;
}
}
// This will return the best possible
// move for the player
static Move findBestMove(char board[][])
{
int bestVal = -1000;
Move bestMove = new Move();
bestMove.row = -1;
bestMove.col = -1;
// Traverse all cells, evaluate minimax function
// for all empty cells. And return the cell
// with optimal value.
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
// Check if cell is empty
if (board[i][j] == '_')
{
// Make the move
board[i][j] = player;
// compute evaluation function for this
// move.
int moveVal = minimax(board, 0, false);
// Undo the move
board[i][j] = '_';
// If the value of the current move is
// more than the best value, then update
// best/
if (moveVal > bestVal)
{
bestMove.row = i;
bestMove.col = j;
bestVal = moveVal;
}
}
}
}
System.out.printf("The value of the best Move " +
"is : %d\n\n", bestVal);
return bestMove;
}
// Driver code
public static void main(String[] args)
{
char board[][] = {{ 'x', 'o', 'x' },
{ 'o', 'o', 'x' },
{ '_', '_', '_' }};
Move bestMove = findBestMove(board);
System.out.printf("The Optimal Move is :\n");
System.out.printf("ROW: %d COL: %d\n\n",
bestMove.row, bestMove.col );
}
}
// This code is contributed by PrinciRaj1992
Python3
# Python3 program to find the next optimal move for a player
player, opponent = 'x', 'o'
# This function returns true if there are moves
# remaining on the board. It returns false if
# there are no moves left to play.
def isMovesLeft(board) :
for i in range(3) :
for j in range(3) :
if (board[i][j] == '_') :
return True
return False
# This is the evaluation function as discussed
# in the previous article ( http://goo.gl/sJgv68 )
def evaluate(b) :
# Checking for Rows for X or O victory.
for row in range(3) :
if (b[row][0] == b[row][1] and b[row][1] == b[row][2]) :
if (b[row][0] == player) :
return 10
elif (b[row][0] == opponent) :
return -10
# Checking for Columns for X or O victory.
for col in range(3) :
if (b[0][col] == b[1][col] and b[1][col] == b[2][col]) :
if (b[0][col] == player) :
return 10
elif (b[0][col] == opponent) :
return -10
# Checking for Diagonals for X or O victory.
if (b[0][0] == b[1][1] and b[1][1] == b[2][2]) :
if (b[0][0] == player) :
return 10
elif (b[0][0] == opponent) :
return -10
if (b[0][2] == b[1][1] and b[1][1] == b[2][0]) :
if (b[0][2] == player) :
return 10
elif (b[0][2] == opponent) :
return -10
# Else if none of them have won then return 0
return 0
# This is the minimax function. It considers all
# the possible ways the game can go and returns
# the value of the board
def minimax(board, depth, isMax) :
score = evaluate(board)
# If Maximizer has won the game return his/her
# evaluated score
if (score == 10) :
return score
# If Minimizer has won the game return his/her
# evaluated score
if (score == -10) :
return score
# If there are no more moves and no winner then
# it is a tie
if (isMovesLeft(board) == False) :
return 0
# If this maximizer's move
if (isMax) :
best = -1000
# Traverse all cells
for i in range(3) :
for j in range(3) :
# Check if cell is empty
if (board[i][j]=='_') :
# Make the move
board[i][j] = player
# Call minimax recursively and choose
# the maximum value
best = max( best, minimax(board,
depth + 1,
not isMax) )
# Undo the move
board[i][j] = '_'
return best
# If this minimizer's move
else :
best = 1000
# Traverse all cells
for i in range(3) :
for j in range(3) :
# Check if cell is empty
if (board[i][j] == '_') :
# Make the move
board[i][j] = opponent
# Call minimax recursively and choose
# the minimum value
best = min(best, minimax(board, depth + 1, not isMax))
# Undo the move
board[i][j] = '_'
return best
# This will return the best possible move for the player
def findBestMove(board) :
bestVal = -1000
bestMove = (-1, -1)
# Traverse all cells, evaluate minimax function for
# all empty cells. And return the cell with optimal
# value.
for i in range(3) :
for j in range(3) :
# Check if cell is empty
if (board[i][j] == '_') :
# Make the move
board[i][j] = player
# compute evaluation function for this
# move.
moveVal = minimax(board, 0, False)
# Undo the move
board[i][j] = '_'
# If the value of the current move is
# more than the best value, then update
# best/
if (moveVal > bestVal) :
bestMove = (i, j)
bestVal = moveVal
print("The value of the best Move is :", bestVal)
print()
return bestMove
# Driver code
board = [
[ 'x', 'o', 'x' ],
[ 'o', 'o', 'x' ],
[ '_', '_', '_' ]
]
bestMove = findBestMove(board)
print("The Optimal Move is :")
print("ROW:", bestMove[0], " COL:", bestMove[1])
# This code is contributed by divyesh072019
C#
// C# program to find the
// next optimal move for a player
using System;
using System.Collections.Generic;
class GFG
{
class Move
{
public int row, col;
};
static char player = 'x', opponent = 'o';
// This function returns true if there are moves
// remaining on the board. It returns false if
// there are no moves left to play.
static Boolean isMovesLeft(char [,]board)
{
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
if (board[i, j] == '_')
return true;
return false;
}
// This is the evaluation function as discussed
// in the previous article ( http://goo.gl/sJgv68 )
static int evaluate(char [,]b)
{
// Checking for Rows for X or O victory.
for (int row = 0; row < 3; row++)
{
if (b[row, 0] == b[row, 1] &&
b[row, 1] == b[row, 2])
{
if (b[row, 0] == player)
return +10;
else if (b[row, 0] == opponent)
return -10;
}
}
// Checking for Columns for X or O victory.
for (int col = 0; col < 3; col++)
{
if (b[0, col] == b[1, col] &&
b[1, col] == b[2, col])
{
if (b[0, col] == player)
return +10;
else if (b[0, col] == opponent)
return -10;
}
}
// Checking for Diagonals for X or O victory.
if (b[0, 0] == b[1, 1] && b[1, 1] == b[2, 2])
{
if (b[0, 0] == player)
return +10;
else if (b[0, 0] == opponent)
return -10;
}
if (b[0, 2] == b[1, 1] && b[1, 1] == b[2, 0])
{
if (b[0, 2] == player)
return +10;
else if (b[0, 2] == opponent)
return -10;
}
// Else if none of them have won then return 0
return 0;
}
// This is the minimax function. It considers all
// the possible ways the game can go and returns
// the value of the board
static int minimax(char [,]board,
int depth, Boolean isMax)
{
int score = evaluate(board);
// If Maximizer has won the game
// return his/her evaluated score
if (score == 10)
return score;
// If Minimizer has won the game
// return his/her evaluated score
if (score == -10)
return score;
// If there are no more moves and
// no winner then it is a tie
if (isMovesLeft(board) == false)
return 0;
// If this maximizer's move
if (isMax)
{
int best = -1000;
// Traverse all cells
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
// Check if cell is empty
if (board[i, j] == '_')
{
// Make the move
board[i, j] = player;
// Call minimax recursively and choose
// the maximum value
best = Math.Max(best, minimax(board,
depth + 1, !isMax));
// Undo the move
board[i, j] = '_';
}
}
}
return best;
}
// If this minimizer's move
else
{
int best = 1000;
// Traverse all cells
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
// Check if cell is empty
if (board[i, j] == '_')
{
// Make the move
board[i, j] = opponent;
// Call minimax recursively and choose
// the minimum value
best = Math.Min(best, minimax(board,
depth + 1, !isMax));
// Undo the move
board[i, j] = '_';
}
}
}
return best;
}
}
// This will return the best possible
// move for the player
static Move findBestMove(char [,]board)
{
int bestVal = -1000;
Move bestMove = new Move();
bestMove.row = -1;
bestMove.col = -1;
// Traverse all cells, evaluate minimax function
// for all empty cells. And return the cell
// with optimal value.
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
// Check if cell is empty
if (board[i, j] == '_')
{
// Make the move
board[i, j] = player;
// compute evaluation function for this
// move.
int moveVal = minimax(board, 0, false);
// Undo the move
board[i, j] = '_';
// If the value of the current move is
// more than the best value, then update
// best/
if (moveVal > bestVal)
{
bestMove.row = i;
bestMove.col = j;
bestVal = moveVal;
}
}
}
}
Console.Write("The value of the best Move " +
"is : {0}\n\n", bestVal);
return bestMove;
}
// Driver code
public static void Main(String[] args)
{
char [,]board = {{ 'x', 'o', 'x' },
{ 'o', 'o', 'x' },
{ '_', '_', '_' }};
Move bestMove = findBestMove(board);
Console.Write("The Optimal Move is :\n");
Console.Write("ROW: {0} COL: {1}\n\n",
bestMove.row, bestMove.col );
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// Javascript program to find the
// next optimal move for a player
class Move
{
constructor()
{
let row,col;
}
}
let player = 'x', opponent = 'o';
// This function returns true if there are moves
// remaining on the board. It returns false if
// there are no moves left to play.
function isMovesLeft(board)
{
for(let i = 0; i < 3; i++)
for(let j = 0; j < 3; j++)
if (board[i][j] == '_')
return true;
return false;
}
// This is the evaluation function as discussed
// in the previous article ( http://goo.gl/sJgv68 )
function evaluate(b)
{
// Checking for Rows for X or O victory.
for(let row = 0; row < 3; row++)
{
if (b[row][0] == b[row][1] &&
b[row][1] == b[row][2])
{
if (b[row][0] == player)
return +10;
else if (b[row][0] == opponent)
return -10;
}
}
// Checking for Columns for X or O victory.
for(let col = 0; col < 3; col++)
{
if (b[0][col] == b[1][col] &&
b[1][col] == b[2][col])
{
if (b[0][col] == player)
return +10;
else if (b[0][col] == opponent)
return -10;
}
}
// Checking for Diagonals for X or O victory.
if (b[0][0] == b[1][1] && b[1][1] == b[2][2])
{
if (b[0][0] == player)
return +10;
else if (b[0][0] == opponent)
return -10;
}
if (b[0][2] == b[1][1] &&
b[1][1] == b[2][0])
{
if (b[0][2] == player)
return +10;
else if (b[0][2] == opponent)
return -10;
}
// Else if none of them have
// won then return 0
return 0;
}
// This is the minimax function. It
// considers all the possible ways
// the game can go and returns the
// value of the board
function minimax(board, depth, isMax)
{
let score = evaluate(board);
// If Maximizer has won the game
// return his/her evaluated score
if (score == 10)
return score;
// If Minimizer has won the game
// return his/her evaluated score
if (score == -10)
return score;
// If there are no more moves and
// no winner then it is a tie
if (isMovesLeft(board) == false)
return 0;
// If this maximizer's move
if (isMax)
{
let best = -1000;
// Traverse all cells
for(let i = 0; i < 3; i++)
{
for(let j = 0; j < 3; j++)
{
// Check if cell is empty
if (board[i][j]=='_')
{
// Make the move
board[i][j] = player;
// Call minimax recursively
// and choose the maximum value
best = Math.max(best, minimax(board,
depth + 1, !isMax));
// Undo the move
board[i][j] = '_';
}
}
}
return best;
}
// If this minimizer's move
else
{
let best = 1000;
// Traverse all cells
for(let i = 0; i < 3; i++)
{
for(let j = 0; j < 3; j++)
{
// Check if cell is empty
if (board[i][j] == '_')
{
// Make the move
board[i][j] = opponent;
// Call minimax recursively and
// choose the minimum value
best = Math.min(best, minimax(board,
depth + 1, !isMax));
// Undo the move
board[i][j] = '_';
}
}
}
return best;
}
}
// This will return the best possible
// move for the player
function findBestMove(board)
{
let bestVal = -1000;
let bestMove = new Move();
bestMove.row = -1;
bestMove.col = -1;
// Traverse all cells, evaluate
// minimax function for all empty
// cells. And return the cell
// with optimal value.
for(let i = 0; i < 3; i++)
{
for(let j = 0; j < 3; j++)
{
// Check if cell is empty
if (board[i][j] == '_')
{
// Make the move
board[i][j] = player;
// compute evaluation function
// for this move.
let moveVal = minimax(board, 0, false);
// Undo the move
board[i][j] = '_';
// If the value of the current move
// is more than the best value, then
// update best
if (moveVal > bestVal)
{
bestMove.row = i;
bestMove.col = j;
bestVal = moveVal;
}
}
}
}
document.write("The value of the best Move " +
"is : ", bestVal + "<br><br>");
return bestMove;
}
// Driver code
let board = [ [ 'x', 'o', 'x' ],
[ 'o', 'o', 'x' ],
[ '_', '_', '_' ] ];
let bestMove = findBestMove(board);
document.write("The Optimal Move is :<br>");
document.write("ROW: " + bestMove.row +
" COL: "+ bestMove.col + "<br>");
// This code is contributed by rag2127
</script>
Output :
The value of the best Move is : 10
The Optimal Move is :
ROW: 2 COL: 2
Explanation :

This image depicts all the possible paths that the game can take from the root board state. It is often called the Game Tree.
The 3 possible scenarios in the above example are :
- Left Move : If X plays [2,0]. Then O will play [2,1] and win the game. The value of this move is -10
- Middle Move : If X plays [2,1]. Then O will play [2,2] which draws the game. The value of this move is 0
- Right Move : If X plays [2,2]. Then he will win the game. The value of this move is +10;
Remember, even though X has a possibility of winning if he plays the middle move, O will never let that happen and will choose to draw instead.
Therefore the best choice for X, is to play [2,2], which will guarantee a victory for him.
We do encourage our readers to try giving various inputs and understanding why the AI choose to play that move. Minimax may confuse programmers as it thinks several moves in advance and is very hard to debug at times. Remember this implementation of minimax algorithm can be applied any 2 player board game with some minor changes to the board structure and how we iterate through the moves. Also sometimes it is impossible for minimax to compute every possible game state for complex games like Chess. Hence we only compute upto a certain depth and use the evaluation function to calculate the value of the board.
Stay tuned for next weeks article where we shall be discussing about Alpha-Beta pruning that can drastically improve the time taken by minimax to traverse a game tree.
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read