Finding nth term of any Polynomial Sequence Last Updated : 29 Mar, 2024 Comments Improve Suggest changes Like Article Like Report Given a few terms of a sequence, we are often asked to find the expression for the nth term of this sequence. While there is a multitude of ways to do this, In this article, we discuss an algorithmic approach which will give the correct answer for any polynomial expression. Note that this method fails for trigonometric, exponential or other transcendental sequences. We will take a few examples and discuss the method as we solve these examples. Example 1 Let us take the sequence S = 3, 9, 15, 21, .... Trivial Solution We can easily see that this is an A.P series. The starting term is 3 and the common difference is 6. Hence the nth term of the sequence is 3 + (n-1) * 6. Our Solution Since we know that an nth order polynomial has the form: Polynomial = Pn = a0 + a1*x^1 + a2*x^2 + ... + an*x^n Since we already know a few terms of the sequence, we can substitute these values in the above expression and obtain some equations. Then we need to solve this system of linear equations and obtain the coefficients a0, a1, ... an. The trick is to somehow know the order of the polynomial. This is simple enough to do if we remember that the nth order forward difference is constant for an nth order polynomial. Also all higher order forward differences are 0. Let us obtain the forward differences for the series 3 9 15 21 27 ... 6 6 6 6 Since the first forward difference is constant, we conclude that the sequence is a first order polynomial. 1st order polynomial Sn = a0 + a1*n For n = 1, Sn = 3 3 = a0 + a1 .... (1) For n = 2, Sn = 9 9 = a0 + 2*a1 .... (2) Solving (1) and (2) we get a1 = 6 and a0 = -3 Hence we obtain Sn = -3 + 6*n Note that we obtain slightly different formulations of the sequence in the above two methods. But both these formulations are correct and can easily be converted from one form to another Example 2 Lets us take the sequence S = 9 24 47 78 117 164 219 ... 15 23 31 39 47 55 8 8 8 8 8 Since the 2n order forward difference is constant, the Sequence is a 2nd order polynomial S = a0 + a1*n + a2 *n*n Substituting n = 1, 2, 3 and corresponding entries we get 9 = a0 + a1 + a2 ... (1) 24 = a0 + 2*a1 + 4*a2 ... (2) 47 = a0 + 3*a1 + 9*a3 ... (3) Writing matrices for above equations A = 1 1 1 1 2 4 1 3 9 B = 9 24 47 X = [a0 a1 a2] = inv(A)*B = [ 2 3 4] Hence a0 = 2, a1 = 3, a2 = 4 Therefore S = 2 + 3*n + 4 * n * n Example 3 S = 28, 168, 516, 1168, 2220 ... Forward Differences 28 168 516 1168 2220 140 348 652 1052 208 304 400 96 96 The Sequence is a third order polynomial S = a0 + a1*n + a2*n*n + a3*n*n*n Substituting n = 1, 2, 3, 4 and corresponding values 28 = a0 + a1 + a2 + a3 168 = a0 + 2*a1 + 4*a2*a2 + 8*a3*a3*a3 516 = a0 + 3*a1 + 9*a2*a2 + 27*a3*a3*a3 1168 = a0 + 4*a1 + 16*a2*a2 + 64*a3*a3*a3 Writing matrices for above equations A = 1 1 1 1 1 2 4 8 1 3 9 27 1 4 16 64 B = 28, 168, 516, 1168 X = [a0 a1 a2 a3] = inv(A)*B = [0, 4, 8, 16] Therefore S = 4*n + 8*n*n + 16*n*n*n Note: To solve an nth order Sequence we need to solve a system of n equations. These equations can either be solved by hand or by using matrix-based math calculators like MATLAB, Octave etc. A free online version of Octave is available at Octave Online. Comment More infoAdvertise with us Next Article Limits, Continuity and Differentiability S Sayan Mahapatra Follow Improve Article Tags : Misc Mathematical Matrix Engineering Mathematics DSA series +2 More Practice Tags : MathematicalMatrixMiscseries Similar Reads Engineering Mathematics Tutorials Engineering mathematics is a vital component of the engineering discipline, offering the analytical tools and techniques necessary for solving complex problems across various fields. Whether you're designing a bridge, optimizing a manufacturing process, or developing algorithms for computer systems, 3 min read Linear AlgebraMatricesMatrices are key concepts in mathematics, widely used in solving equations and problems in fields like physics and computer science. A matrix is simply a grid of numbers, and a determinant is a value calculated from a square matrix.Example: \begin{bmatrix} 6 & 9 \\ 5 & -4 \\ \end{bmatrix}_{2 3 min read Row Echelon FormRow Echelon Form (REF) of a matrix simplifies solving systems of linear equations, understanding linear transformations, and working with matrix equations. A matrix is in Row Echelon form if it has the following properties:Zero Rows at the Bottom: If there are any rows that are completely filled wit 4 min read Eigenvalues and EigenvectorsEigenvectors are the directions that remain unchanged during a transformation, even if they get longer or shorter. Eigenvalues are the numbers that indicate how much something stretches or shrinks during that transformation. These ideas are important in many areas of math and engineering, including 15+ min read System of Linear EquationsIn mathematics, a system of linear equations consists of two or more linear equations that share the same variables. These systems often arise in real-world applications, such as engineering, physics, economics, and more, where relationships between variables need to be analyzed. Understanding how t 8 min read Matrix DiagonalizationMatrix diagonalization is the process of reducing a square matrix into its diagonal form using a similarity transformation. This process is useful because diagonal matrices are easier to work with, especially when raising them to integer powers.Not all matrices are diagonalizable. A matrix is diagon 8 min read LU DecompositionLU decomposition or factorization of a matrix is the factorization of a given square matrix into two triangular matrices, one upper triangular matrix and one lower triangular matrix, such that the product of these two matrices gives the original matrix. It was introduced by Alan Turing in 1948, who 7 min read Finding Inverse of a Square Matrix using Cayley Hamilton Theorem in MATLABMatrix is the set of numbers arranged in rows & columns in order to form a Rectangular array. Here, those numbers are called the entries or elements of that matrix. A Rectangular array of (m*n) numbers in the form of 'm' horizontal lines (rows) & 'n' vertical lines (called columns), is calle 4 min read Sequence & SeriesMathematics | Sequence, Series and SummationsSequences, series, and summations are fundamental concepts of mathematical analysis and it has practical applications in science, engineering, and finance.Table of ContentWhat is Sequence?Theorems on SequencesProperties of SequencesWhat is Series?Properties of SeriesTheorems on SeriesSummation Defin 8 min read Binomial TheoremBinomial theorem is a fundamental principle in algebra that describes the algebraic expansion of powers of a binomial. According to this theorem, the expression (a + b)n where a and b are any numbers and n is a non-negative integer. It can be expanded into the sum of terms involving powers of a and 15+ min read Finding nth term of any Polynomial SequenceGiven a few terms of a sequence, we are often asked to find the expression for the nth term of this sequence. While there is a multitude of ways to do this, In this article, we discuss an algorithmic approach which will give the correct answer for any polynomial expression. Note that this method fai 4 min read CalculusLimits, Continuity and DifferentiabilityLimits, Continuity, and Differentiation are fundamental concepts in calculus. They are essential for analyzing and understanding function behavior and are crucial for solving real-world problems in physics, engineering, and economics.Table of ContentLimitsKey Characteristics of LimitsExample of Limi 10 min read Cauchy's Mean Value TheoremCauchy's Mean Value theorem provides a relation between the change of two functions over a fixed interval with their derivative. It is a special case of Lagrange Mean Value Theorem. Cauchy's Mean Value theorem is also called the Extended Mean Value Theorem or the Second Mean Value Theorem.According 7 min read Taylor SeriesA Taylor series represents a function as an infinite sum of terms, calculated from the values of its derivatives at a single point.Taylor series is a powerful mathematical tool used to approximate complex functions with an infinite sum of terms derived from the function's derivatives at a single poi 8 min read Inverse functions and composition of functionsInverse Functions - In mathematics a function, a, is said to be an inverse of another, b, if given the output of b a returns the input value given to b. Additionally, this must hold true for every element in the domain co-domain(range) of b. In other words, assuming x and y are constants, if b(x) = 3 min read Definite Integral | Definition, Formula & How to CalculateA definite integral is an integral that calculates a fixed value for the area under a curve between two specified limits. The resulting value represents the sum of all infinitesimal quantities within these boundaries. i.e. if we integrate any function within a fixed interval it is called a Definite 8 min read Application of Derivative - Maxima and MinimaDerivatives have many applications, like finding rate of change, approximation, maxima/minima and tangent. In this section, we focus on their use in finding maxima and minima.Note: If f(x) is a continuous function, then for every continuous function on a closed interval has a maximum and a minimum v 6 min read Probability & StatisticsMean, Variance and Standard DeviationMean, Variance and Standard Deviation are fundamental concepts in statistics and engineering mathematics, essential for analyzing and interpreting data. These measures provide insights into data's central tendency, dispersion, and spread, which are crucial for making informed decisions in various en 10 min read Conditional ProbabilityConditional probability defines the probability of an event occurring based on a given condition or prior knowledge of another event. Conditional probability is the likelihood of an event occurring, given that another event has already occurred. In probability, this is denoted as A given B, expresse 12 min read Bayes' TheoremBayes' Theorem is a mathematical formula that helps determine the conditional probability of an event based on prior knowledge and new evidence.It adjusts probabilities when new information comes in and helps make better decisions in uncertain situations.Bayes' Theorem helps us update probabilities 12 min read Probability Distribution - Function, Formula, TableA probability distribution is a mathematical function or rule that describes how the probabilities of different outcomes are assigned to the possible values of a random variable. It provides a way of modeling the likelihood of each outcome in a random experiment.While a frequency distribution shows 15+ min read Covariance and CorrelationCovariance and correlation are the two key concepts in Statistics that help us analyze the relationship between two variables. Covariance measures how two variables change together, indicating whether they move in the same or opposite directions. Relationship between Independent and dependent variab 5 min read Practice QuestionsLast Minute Notes - Engineering MathematicsGATE CSE is a national-level engineering entrance exam in India specifically for Computer Science and Engineering. It's conducted by top Indian institutions like IISc Bangalore and various IITs. In GATE CSE, engineering mathematics is a significant portion of the exam, typically constituting 15% of 15+ min read Engineering Mathematics - GATE CSE Previous Year QuestionsSolving GATE Previous Year's Questions (PYQs) not only clears the concepts but also helps to gain flexibility, speed, accuracy, and understanding of the level of questions generally asked in the GATE exam, and that eventually helps you to gain good marks in the examination. Previous Year Questions h 4 min read Like