Open In App

Find H-Index for sorted citations using Binary Search

Last Updated : 24 Feb, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array citations[] consisting of N integers in non-increasing order, representing citations, the task is to find the H-index.

H-Index is usually assigned to the researcher denoting the contributions made in terms of no of papers and citations. H-index(H) is the largest value such that the researcher has at least H papers cited at least H times.

Examples:

Input: citations[] = {5, 3, 3, 0, 0} 
Output:
Explanation: 
There are atleast 3 papers (5, 3, 3) with atleast 3 citations
Input: citations[] = {5, 4, 2, 1, 1} 
Output:
Explanation: 
There are atleast 2 papers (5, 4, 2) with atleast 2 citations.

Naive Approach: A simple solution is to iterate through the papers from left to right and increment the H-index while citationsi is greater than or equal to index.


Time Complexity: O(N)

Efficient Approach: The idea is to use binary search to optimize the above approach. The H-index can lie in the range from 0 to N. To check if a given value is possible or not, check if citations[value] is greater than or equal to value.

  • Initialize the search range for the Binary search as 0 to N.
  • Find the middle element of the range.
  • Check if the middle element of the citation is less than the index. If so, then update the left range to middle element.
  • Otherwise, check if the middle element of the citation is greater than the index. If so, then update the right range to the middle element.
  • Otherwise, the given index is the H-index of the Citations.

Below is the implementation of the above approach:

C++
// C++ implementation of the
// above approach

#include <bits/stdc++.h>
using namespace std;

// Function to find the H-index
int hIndex(vector<int> citations,
           int n)
{

    int hindex = 0;

    // Set the range for binary search
    int low = 0, high = n - 1;

    while (low <= high) {
        int mid = (low + high) / 2;

        // Check if current citations is
        // possible
        if (citations[mid] >= (mid + 1)) {

            // Check to the right of mid
            low = mid + 1;

            // Update h-index
            hindex = mid + 1;
        }
        else {

            // Since current value is not
            // possible, check to the left
            // of mid
            high = mid - 1;
        }
    }

    // Print the h-index
    cout << hindex << endl;

    return hindex;
}

// Driver Code
int main()
{

    // citations
    int n = 5;
    vector<int> citations = { 5, 3, 3, 2, 2 };

    hIndex(citations, n);
}
Java
// Java implementation of the
// above approach
import java.io.*;

class GFG{

// Function to find the H-index
static int hIndex(int[] citations, int n)
{
    int hindex = 0;

    // Set the range for binary search
    int low = 0, high = n - 1;

    while (low <= high) 
    {
        int mid = (low + high) / 2;

        // Check if current citations is
        // possible
        if (citations[mid] >= (mid + 1))
        {

            // Check to the right of mid
            low = mid + 1;

            // Update h-index
            hindex = mid + 1;
        }
        else 
        {

            // Since current value is not
            // possible, check to the left
            // of mid
            high = mid - 1;
        }
    }

    // Print the h-index
    System.out.println(hindex);

    return hindex;
}

// Driver Code
public static void main (String[] args)
{

    // citations
    int n = 5;
    int[] citations = { 5, 3, 3, 2, 2 };

    hIndex(citations, n);
}
}

// This code is contributed by sanjoy_62
Python3
# Python3 implementation of the 
# above approach 

# Function to find the H-index 
def hIndex(citations, n):

    hindex = 0

    # Set the range for binary search
    low = 0
    high = n - 1

    while (low <= high):
        mid = (low + high) // 2

        # Check if current citations is
        # possible
        if (citations[mid] >= (mid + 1)):

            # Check to the right of mid
            low = mid + 1

            # Update h-index
            hindex = mid + 1

        else:
            
            # Since current value is not
            # possible, check to the left
            # of mid
            high = mid - 1

    # Print the h-index
    print(hindex)

    return hindex

# Driver Code

# citations
n = 5
citations = [ 5, 3, 3, 2, 2 ]

# Function Call
hIndex(citations, n)

# This code is contributed by Shivam Singh
C#
// C# implementation of the
// above approach
using System;

class GFG{

// Function to find the H-index
static int hIndex(int[] citations, int n)
{
    int hindex = 0;

    // Set the range for binary search
    int low = 0, high = n - 1;

    while (low <= high)
    {
        int mid = (low + high) / 2;

        // Check if current citations is
        // possible
        if (citations[mid] >= (mid + 1)) 
        {
            
            // Check to the right of mid
            low = mid + 1;

            // Update h-index
            hindex = mid + 1;
        }
        else
        {
            
            // Since current value is not
            // possible, check to the left
            // of mid
            high = mid - 1;
        }
    }

    // Print the h-index
    Console.WriteLine(hindex);

    return hindex;
}

// Driver Code
public static void Main ()
{

    // citations
    int n = 5;
    int[] citations = { 5, 3, 3, 2, 2 };

    hIndex(citations, n);
}
}

// This code is contributed by sanjoy_62
JavaScript
<script>

// JavaScript program to implement
// the above approach

 // Function to find the H-index
function hIndex(citations, n)
{
    let hindex = 0;
  
    // Set the range for binary search
    let low = 0, high = n - 1;
  
    while (low <= high) 
    {
        let mid = (low + high) / 2;
  
        // Check if current citations is
        // possible
        if (citations[mid] >= (mid + 1))
        {
  
            // Check to the right of mid
            low = mid + 1;
  
            // Update h-index
            hindex = mid + 1;
        }
        else 
        {
  
            // Since current value is not
            // possible, check to the left
            // of mid
            high = mid - 1;
        }
    }
  
    // Print the h-index
    document.write(hindex);
  
    return hindex;
}
 
// Driver code

    // citations
    let n = 5;
    let citations = [ 5, 3, 3, 2, 2 ];
  
    hIndex(citations, n)

// This code is contributed by target_2.
</script>

Output: 
3

Time Complexity: O(logN) 
Auxiliary Space: O(1)


Next Article

Similar Reads