Find all numbers in range [1, N] that are not present in given Array
Last Updated :
23 Jul, 2025
Given an array arr[] of size N, where arr[i] is natural numbers less than or equal to N, the task is to find all the numbers in the range [1, N] that are not present in the given array.
Examples:
Input: arr[ ] = {5, 5, 4, 4, 2}
Output: 1 3
Explanation:
For all numbers in the range [1, 5], 1 and 3 are not present in the array.
Input: arr[ ] = {3, 2, 3, 1}
Output: 4
Naive Approach: The simplest approach is to hash every array element using any data structure like the dictionary and then iterate over the range [1, N] and print all numbers not present in the hash.
d
Time Complexity: O(N)
Auxiliary Space: O(N)
Approach: The above approach can be optimized further by marking the number at position arr[i] - 1, negative to mark i is present in the array. Then print all positions of the array elements that are positive as they are missing. Follow the steps below to solve the problem:
- Iterate over the array, arr[] and for each current element, num perform the following steps:
- Update arr[abs(num)-1] to -abs(arr[abs(num)-1]).
- Iterate over the array, arr[] using the variable i, and print the i+1 if arr[i] is positive.
Below is the implementation of the above approach:
C++
// C++ program for above approach
#include <iostream>
using namespace std;
// Function to find the missing numbers
void getMissingNumbers(int arr[], int N)
{
// traverse the array arr[]
for (int i = 0; i < N; i++) {
// Update
arr[abs(arr[i]) - 1] = -(abs(arr[abs(arr[i]) - 1]));
}
// Traverse the array arr[]
for (int i = 0; i < N; i++) {
// If Num is not present
if (arr[i] > 0)
cout << i + 1 << " ";
}
}
// Driver Code
int main()
{
// Given Input
int N = 5;
int arr[] = { 5, 5, 4, 4, 2 };
// Function Call
getMissingNumbers(arr, N);
return 0;
}
// This codeis contributed by dwivediyash
Java
// Java program for the above approach
import java.io.*;
class GFG
{
// Function to find the missing numbers
static void getMissingNumbers(int arr[], int N)
{
// traverse the array arr[]
for (int i = 0; i < N; i++)
{
// Update
arr[(Math.abs(arr[i]) - 1)]
= -(Math.abs(arr[(Math.abs(arr[i]) - 1)]));
}
// Traverse the array arr[]
for (int i = 0; i < N; i++)
{
// If Num is not present
if (arr[i] > 0)
System.out.print(i + 1 + " ");
}
}
// Driver Code
public static void main(String[] args)
{
// Given Input
int N = 5;
int arr[] = { 5, 5, 4, 4, 2 };
// Function Call
getMissingNumbers(arr, N);
}
}
// This code is contributed by Potta Lokesh
Python3
# Python program for the above approach
# Function to find the missing numbers
def getMissingNumbers(arr):
# Traverse the array arr[]
for num in arr:
# Update
arr[abs(num)-1] = -(abs(arr[abs(num)-1]))
# Traverse the array arr[]
for pos, num in enumerate(arr):
# If Num is not present
if num > 0:
print(pos + 1, end =' ')
# Given Input
arr = [5, 5, 4, 4, 2]
# Function Call
getMissingNumbers(arr)
C#
// C# program for above approach
using System;
using System.Collections.Generic;
class GFG{
// Function to find the missing numbers
static void getMissingNumbers(int []arr, int N)
{
// traverse the array arr[]
for (int i = 0; i < N; i++)
{
// Update
arr[(Math.Abs(arr[i]) - 1)] = -(Math.Abs(arr[(Math.Abs(arr[i]) - 1)]));
}
// Traverse the array arr[]
for (int i = 0; i < N; i++)
{
// If Num is not present
if (arr[i] > 0)
Console.Write(i + 1 + " ");
}
}
// Driver Code
public static void Main()
{
// Given Input
int N = 5;
int []arr = { 5, 5, 4, 4, 2 };
// Function Call
getMissingNumbers(arr, N);
}
}
// This code is contributed by ipg2016107.
JavaScript
<script>
// Javascript program for the above approach
// Function to find the missing numbers
function getMissingNumbers(arr){
// Traverse the array arr[]
for(let num of arr)
// Update
arr[(Math.abs(num)-1)] = -(Math.abs(arr[(Math.abs(num)-1)]))
// Traverse the array arr[]
for (pos in arr)
// If Num is not present
if(arr[pos] > 0)
document.write(`${parseInt(pos) + 1} `)
}
// Given Input
let arr = [5, 5, 4, 4, 2]
// Function Call
getMissingNumbers(arr)
// This code is contributed by _saurabh_jaiswal.
</script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem