Open In App

Find a sequence of N prime numbers whose sum is a composite number

Last Updated : 31 May, 2022
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report

Given an integer N and the task is to find a sequence of N prime numbers whose sum is a composite number.
Examples: 
 

Input: N = 5 
Output: 2 3 5 7 11 
2 + 3 + 5 + 7 + 11 = 28 which is composite.
Input: N = 6 
Output: 3 5 7 11 13 17 
 


 


Approach: The sum of two prime numbers is always even which is composite as they are odd numbers except 2. There are two cases now, 
 

  1. When N is even then we can print any N prime numbers except 2 and their sum will always be even i.e. odd numbers when added even a number of times will give an even sum.
  2. When N is odd then we can print 2 and any other N - 1 prime to make sure that the sum is even. Since, N - 1 is even so the sum will be even for any primes except 2 then we add 2 as the Nth number to make sure that the sum remains even.


Below is the implementation of the above approach: 
 

C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define MAXN 100000

// To store prime numbers
vector<int> v;

// Function to find and store
// all the primes <= n
void SieveOfEratosthenes(int n)
{
    // Create a boolean array "prime[0..n]" and initialize
    // all entries it as true. A value in prime[i] will
    // finally be false if i is Not a prime, else true.
    bool prime[n + 1];
    memset(prime, true, sizeof(prime));

    for (int p = 2; p * p <= n; p++) {

        // If prime[p] is not changed, then it is a prime
        if (prime[p] == true) {

            // Update all multiples of p greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i <= n; i += p)
                prime[i] = false;
        }
    }

    // Store all the prime numbers
    for (int p = 2; p <= n; p++)
        if (prime[p])
            v.push_back(p);
}

// Function to print the required sequence
void GetSequence(int n)
{

    // If n is even then we do not include 2
    // and start the sequence from the 2nd
    // smallest prime else we include 2
    int i = (n % 2 == 0) ? 1 : 0;

    int cnt = 0;
    // Print the sequence
    while (cnt < n) {
        cout << v[i] << " ";
        i++;
        cnt++;
    }
}

// Driver code
int main()
{
    int n = 6;
    SieveOfEratosthenes(MAXN);

    GetSequence(n);

    return 0;
}
Java
// Java implementation of the above approach
import java.util.*;

class GFG
{
    
static int MAXN = 100000;

// To store prime numbers
static Vector<Integer> v = new Vector<Integer>();

// Function to find and store
// all the primes <= n
static void SieveOfEratosthenes(int n)
{
    // Create a boolean array "prime[0..n]" and initialize
    // all entries it as true. A value in prime[i] will
    // finally be false if i is Not a prime, else true.
    boolean[] prime = new boolean[n + 1];
    Arrays.fill(prime,true);

    for (int p = 2; p * p <= n; p++)
    {

        // If prime[p] is not changed, then it is a prime
        if (prime[p] == true) 
        {

            // Update all multiples of p greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i <= n; i += p)
                prime[i] = false;
        }
    }

    // Store all the prime numbers
    for (int p = 2; p <= n; p++)
        if (prime[p])
            v.add(p);
}

// Function to print the required sequence
static void GetSequence(int n)
{

    // If n is even then we do not include 2
    // and start the sequence from the 2nd
    // smallest prime else we include 2
    int i = (n % 2 == 0) ? 1 : 0;

    int cnt = 0;
    
    // Print the sequence
    while (cnt < n)
    {
        System.out.print(v.get(i) + " ");
        i++;
        cnt++;
    }
}

// Driver code
public static void main(String[] args)
{
    int n = 6;
    SieveOfEratosthenes(MAXN);

    GetSequence(n);
}
}

// This code is contributed by Princi Singh
python
# Python3 implementation of the approach

MAXN=100000

# To store prime numbers
v=[]

# Function to find and store
# all the primes <= n
def SieveOfEratosthenes(n):

    # Create a boolean array "prime[0..n]" and initialize
    # all entries it as true. A value in prime[i] will
    # finally be false if i is Not a prime, else true.
    prime=[True for i in range(n + 1)]

    for p in range(2,n+1):

        # If prime[p] is not changed, then it is a prime
        if (prime[p] == True):

            # Update all multiples of p greater than or
            # equal to the square of it
            # numbers which are multiple of p and are
            # less than p^2 are already been marked.
            for i in range(2 * p, n + 1, p):
                prime[i] = False

    # Store all the prime numbers
    for p in range(2, n + 1):
        if (prime[p]):
            v.append(p)

# Function to print the required sequence
def GetSequence(n):

    # If n is even then we do not include 2
    # and start the sequence from the 2nd
    # smallest prime else we include 2
    if n % 2 == 0:
        i = 1
    else:
        i = 0

    cnt = 0
    # Print the sequence
    while (cnt < n):
        print(v[i],end=" ")
        i += 1
        cnt += 1


# Driver code
n = 6
SieveOfEratosthenes(MAXN)

GetSequence(n)

# This code is contributed by mohit kumar 29
C#
// C# implementation of the approach
using System;
using System.Collections.Generic;

class GFG 
{ 
    
static int MAXN = 100000; 

// To store prime numbers 
static List<int> v = new List<int>(); 

// Function to find and store 
// all the primes <= n 
static void SieveOfEratosthenes(int n) 
{ 
    // Create a boolean array "prime[0..n]" and initialize 
    // all entries it as true. A value in prime[i] will 
    // finally be false if i is Not a prime, else true. 
    Boolean[] prime = new Boolean[n + 1]; 
    for(int i = 0; i < n + 1; i++)
        prime[i] = true;

    for (int p = 2; p * p <= n; p++) 
    { 

        // If prime[p] is not changed, then it is a prime 
        if (prime[p] == true) 
        { 

            // Update all multiples of p greater than or 
            // equal to the square of it 
            // numbers which are multiple of p and are 
            // less than p^2 are already been marked. 
            for (int i = p * p; i <= n; i += p) 
                prime[i] = false; 
        } 
    } 

    // Store all the prime numbers 
    for (int p = 2; p <= n; p++) 
        if (prime[p]) 
            v.Add(p); 
} 

// Function to print the required sequence 
static void GetSequence(int n) 
{ 

    // If n is even then we do not include 2 
    // and start the sequence from the 2nd 
    // smallest prime else we include 2 
    int i = (n % 2 == 0) ? 1 : 0; 

    int cnt = 0; 
    
    // Print the sequence 
    while (cnt < n) 
    { 
        Console.Write(v[i] + " "); 
        i++; 
        cnt++; 
    } 
} 

// Driver code 
public static void Main(String[] args) 
{ 
    int n = 6; 
    SieveOfEratosthenes(MAXN); 

    GetSequence(n); 
} 
} 

/* This code is contributed by PrinciRaj1992 */
JavaScript
<script>

// Javascript implementation 
// of the approach

var MAXN = 100000;

// To store prime numbers
var v = [];

// Function to find and store
// all the primes <= n
function SieveOfEratosthenes(n)
{
    // Create a boolean array 
    // "prime[0..n]" and initialize
    // all entries it as true.
    // A value in prime[i] will
    // finally be false if i is Not a prime, 
    // else true.
    var prime = Array(n + 1).fill(true);
    var p;
    for (p = 2; p * p <= n; p++) {

        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
             var i;
            // Update all multiples
            // of p greater than or
            // equal to the square of it
            // numbers which are multiple
            // of p and are
            // less than p^2 are 
            // already been marked.
            for (i = p * p; i <= n; i += p)
                prime[i] = false;
        }
    }

    // Store all the prime numbers
    for (p = 2; p <= n; p++)
        if (prime[p])
            v.push(p);
}

// Function to print 
// the required sequence
function GetSequence(n)
{

    // If n is even then we do not include 2
    // and start the sequence from the 2nd
    // smallest prime else we include 2
    var i = (n % 2 == 0) ? 1 : 0;

    var cnt = 0;
    // Print the sequence
    while (cnt < n) {
        document.write(v[i] + " ");
        i++;
        cnt++;
    }
}

// Driver code
    n = 6;
    SieveOfEratosthenes(MAXN);
    GetSequence(n);

</script>

Output: 
3 5 7 11 13 17

 

Auxiliary Space: O(n)


Similar Reads