Evaluation of Expression Tree
Last Updated :
10 Mar, 2023
Given a simple expression tree, consisting of basic binary operators i.e., + , - ,* and / and some integers, evaluate the expression tree.
Examples:
Input: Root node of the below tree

Output:100
Input: Root node of the below tree

Output: 110
Approach: The approach to solve this problem is based on following observation:
As all the operators in the tree are binary, hence each node will have either 0 or 2 children. As it can be inferred from the examples above, all the integer values would appear at the leaf nodes, while the interior nodes represent the operators.
Therefore we can do inorder traversal of the binary tree and evaluate the expression as we move ahead.
To evaluate the syntax tree, a recursive approach can be followed.
Algorithm:
- Let t be the syntax tree
- If t is not null then
- If t.info is operand then
- Else
- A = solve(t.left)
- B = solve(t.right)
- return A operator B, where operator is the info contained in t
Below is the implementation of the above approach:
C++
// C++ program to evaluate an expression tree
#include <bits/stdc++.h>
using namespace std;
// Class to represent the nodes of syntax tree
class node
{
public:
string info;
node *left = NULL, *right = NULL;
node(string x)
{
info = x;
}
};
// Utility function to return the integer value
// of a given string
int toInt(string s)
{
int num = 0;
// Check if the integral value is
// negative or not
// If it is not negative, generate the number
// normally
if(s[0]!='-')
for (int i=0; i<s.length(); i++)
num = num*10 + (int(s[i])-48);
// If it is negative, calculate the +ve number
// first ignoring the sign and invert the
// sign at the end
else
{
for (int i=1; i<s.length(); i++)
num = num*10 + (int(s[i])-48);
num = num*-1;
}
return num;
}
// This function receives a node of the syntax tree
// and recursively evaluates it
int eval(node* root)
{
// empty tree
if (!root)
return 0;
// leaf node i.e, an integer
if (!root->left && !root->right)
return toInt(root->info);
// Evaluate left subtree
int l_val = eval(root->left);
// Evaluate right subtree
int r_val = eval(root->right);
// Check which operator to apply
if (root->info=="+")
return l_val+r_val;
if (root->info=="-")
return l_val-r_val;
if (root->info=="*")
return l_val*r_val;
return l_val/r_val;
}
//driver function to check the above program
int main()
{
// create a syntax tree
node *root = new node("+");
root->left = new node("*");
root->left->left = new node("5");
root->left->right = new node("-4");
root->right = new node("-");
root->right->left = new node("100");
root->right->right = new node("20");
cout << eval(root) << endl;
delete(root);
root = new node("+");
root->left = new node("*");
root->left->left = new node("5");
root->left->right = new node("4");
root->right = new node("-");
root->right->left = new node("100");
root->right->right = new node("/");
root->right->right->left = new node("20");
root->right->right->right = new node("2");
cout << eval(root);
return 0;
}
Java
// Java program to evaluate expression tree
import java.lang.*;
class GFG{
Node root;
// Class to represent the nodes of syntax tree
public static class Node
{
String data;
Node left, right;
Node(String d)
{
data = d;
left = null;
right = null;
}
}
private static int toInt(String s)
{
int num = 0;
// Check if the integral value is
// negative or not
// If it is not negative, generate
// the number normally
if (s.charAt(0) != '-')
for(int i = 0; i < s.length(); i++)
num = num * 10 + ((int)s.charAt(i) - 48);
// If it is negative, calculate the +ve number
// first ignoring the sign and invert the
// sign at the end
else
{
for(int i = 1; i < s.length(); i++)
num = num * 10 + ((int)(s.charAt(i)) - 48);
num = num * -1;
}
return num;
}
// This function receives a node of the syntax
// tree and recursively evaluate it
public static int evalTree(Node root)
{
// Empty tree
if (root == null)
return 0;
// Leaf node i.e, an integer
if (root.left == null && root.right == null)
return toInt(root.data);
// Evaluate left subtree
int leftEval = evalTree(root.left);
// Evaluate right subtree
int rightEval = evalTree(root.right);
// Check which operator to apply
if (root.data.equals("+"))
return leftEval + rightEval;
if (root.data.equals("-"))
return leftEval - rightEval;
if (root.data.equals("*"))
return leftEval * rightEval;
return leftEval / rightEval;
}
// Driver code
public static void main(String[] args)
{
// Creating a sample tree
Node root = new Node("+");
root.left = new Node("*");
root.left.left = new Node("5");
root.left.right = new Node("-4");
root.right = new Node("-");
root.right.left = new Node("100");
root.right.right = new Node("20");
System.out.println(evalTree(root));
root = null;
// Creating a sample tree
root = new Node("+");
root.left = new Node("*");
root.left.left = new Node("5");
root.left.right = new Node("4");
root.right = new Node("-");
root.right.left = new Node("100");
root.right.right = new Node("/");
root.right.right.left = new Node("20");
root.right.right.right = new Node("2");
System.out.println(evalTree(root));
}
}
// This code is contributed by Ankit Gupta
Python3
# Python program to evaluate expression tree
# Class to represent the nodes of syntax tree
class node:
def __init__(self, value):
self.left = None
self.data = value
self.right = None
# This function receives a node of the syntax tree
# and recursively evaluate it
def evaluateExpressionTree(root):
# empty tree
if root is None:
return 0
# leaf node
if root.left is None and root.right is None:
return int(root.data)
# evaluate left tree
left_sum = evaluateExpressionTree(root.left)
# evaluate right tree
right_sum = evaluateExpressionTree(root.right)
# check which operation to apply
if root.data == '+':
return left_sum + right_sum
elif root.data == '-':
return left_sum - right_sum
elif root.data == '*':
return left_sum * right_sum
else:
return left_sum // right_sum
# Driver function to test above problem
if __name__ == '__main__':
# creating a sample tree
root = node('+')
root.left = node('*')
root.left.left = node('5')
root.left.right = node('-4')
root.right = node('-')
root.right.left = node('100')
root.right.right = node('20')
print (evaluateExpressionTree(root))
root = None
# creating a sample tree
root = node('+')
root.left = node('*')
root.left.left = node('5')
root.left.right = node('4')
root.right = node('-')
root.right.left = node('100')
root.right.right = node('/')
root.right.right.left = node('20')
root.right.right.right = node('2')
print (evaluateExpressionTree(root))
# This code is contributed by Harshit Sidhwa
C#
// C# program to evaluate expression tree
using System;
public class GFG
{
// Class to represent the nodes of syntax tree
public class Node {
public
String data;
public
Node left, right;
public Node(String d) {
data = d;
left = null;
right = null;
}
}
private static int toInt(String s) {
int num = 0;
// Check if the integral value is
// negative or not
// If it is not negative, generate
// the number normally
if (s[0] != '-')
for (int i = 0; i < s.Length; i++)
num = num * 10 + ((int) s[i] - 48);
// If it is negative, calculate the +ve number
// first ignoring the sign and invert the
// sign at the end
else {
for (int i = 1; i < s.Length; i++)
num = num * 10 + ((int) (s[i]) - 48);
num = num * -1;
}
return num;
}
// This function receives a node of the syntax
// tree and recursively evaluate it
public static int evalTree(Node root) {
// Empty tree
if (root == null)
return 0;
// Leaf node i.e, an integer
if (root.left == null && root.right == null)
return toInt(root.data);
// Evaluate left subtree
int leftEval = evalTree(root.left);
// Evaluate right subtree
int rightEval = evalTree(root.right);
// Check which operator to apply
if (root.data.Equals("+"))
return leftEval + rightEval;
if (root.data.Equals("-"))
return leftEval - rightEval;
if (root.data.Equals("*"))
return leftEval * rightEval;
return leftEval / rightEval;
}
// Driver code
public static void Main(String[] args) {
// Creating a sample tree
Node root = new Node("+");
root.left = new Node("*");
root.left.left = new Node("5");
root.left.right = new Node("-4");
root.right = new Node("-");
root.right.left = new Node("100");
root.right.right = new Node("20");
Console.WriteLine(evalTree(root));
root = null;
// Creating a sample tree
root = new Node("+");
root.left = new Node("*");
root.left.left = new Node("5");
root.left.right = new Node("4");
root.right = new Node("-");
root.right.left = new Node("100");
root.right.right = new Node("/");
root.right.right.left = new Node("20");
root.right.right.right = new Node("2");
Console.WriteLine(evalTree(root));
}
}
// This code is contributed by umadevi9616
JavaScript
<script>
// javascript program to evaluate expression tree
var root;
// Class to represent the nodes of syntax tree
class Node {
constructor(val) {
this.data = val;
this.left = null;
this.right = null;
}
}
function toInt( s) {
var num = 0;
// Check if the integral value is
// negative or not
// If it is not negative, generate
// the number normally
if (s.charAt(0) != '-')
for (i = 0; i < s.length; i++)
num = num * 10 + ( s.charCodeAt(i) - 48);
// If it is negative, calculate the +ve number
// first ignoring the sign and invert the
// sign at the end
else {
for (i = 1; i < s.length; i++)
num = num * 10 + (s.charCodeAt(i) - 48);
num = num * -1;
}
return num;
}
// This function receives a node of the syntax
// tree and recursively evaluate it
function evalTree(root) {
// Empty tree
if (root == null)
return 0;
// Leaf node i.e, an integer
if (root.left == null && root.right == null)
return toInt(root.data);
// Evaluate left subtree
var leftEval = evalTree(root.left);
// Evaluate right subtree
var rightEval = evalTree(root.right);
// Check which operator to apply
if (root.data === ("+"))
return leftEval + rightEval;
if (root.data === ("-"))
return leftEval - rightEval;
if (root.data === ("*"))
return leftEval * rightEval;
return leftEval / rightEval;
}
// Driver code
// Creating a sample tree
var root = new Node("+");
root.left = new Node("*");
root.left.left = new Node("5");
root.left.right = new Node("-4");
root.right = new Node("-");
root.right.left = new Node("100");
root.right.right = new Node("20");
document.write(evalTree(root));
root = null;
// Creating a sample tree
root = new Node("+");
root.left = new Node("*");
root.left.left = new Node("5");
root.left.right = new Node("4");
root.right = new Node("-");
root.right.left = new Node("100");
root.right.right = new Node("/");
root.right.right.left = new Node("20");
root.right.right.right = new Node("2");
document.write("<br/>"+evalTree(root));
// This code is contributed by gauravrajput1
</script>
Time Complexity: O(n), as each node is visited once.
Auxiliary Space: O(n)
Similar Reads
Evaluation of Prefix Expressions Prefix and Postfix expressions can be evaluated faster than an infix expression. This is because we don't need to process any brackets or follow operator precedence rule. In postfix and prefix expressions which ever operator comes before will be evaluated first, irrespective of its priority. Also, t
13 min read
Expression Evaluation Evaluate an expression represented by a String. The expression can contain parentheses, you can assume parentheses are well-matched. For simplicity, you can assume only binary operations allowed are +, -, *, and /. Arithmetic Expressions can be written in one of three forms: Infix Notation: Operator
15 min read
Arithmetic Expression Evaluation The stack organization is very effective in evaluating arithmetic expressions. Expressions are usually represented in what is known as Infix notation, in which each operator is written between two operands (i.e., A + B). With this notation, we must distinguish between ( A + B )*C and A + ( B * C ) b
2 min read
Expression Tree An expression tree is a binary tree in which each internal node corresponds to the operator and each leaf node corresponds to the operand so for example expression tree for 3 + ((5 + 9) * 2) would be: Inorder traversal of expression tree produces infix version of given postfix expression (same with
8 min read
Program to evaluate simple expressions You are given a string that represent an expression of digits and operands. E.g. 1+2*3, 1-2+4. You need to evaluate the string or the expression. NO BODMAS is followed. If the expression is of incorrect syntax return -1. Test cases: a) 1+2*3 will be evaluated to 9. b) 4-2+6*3 will be evaluated to 24
11 min read