Open In App

Enneadecagonal number

Last Updated : 19 May, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a number n, the task is to find the nth Enneadecagonal number. 
An Enneadecagonal number is a nineteen-sided polygon in mathematics. It belongs to a class of figurative numbers. The number contains the number of dots and the dots are arranged in a pattern or series. An Enneadecagonal number is also known as nonadecagon. The dots have common points and all other dots are arranged in the successive layer.
 

Examples :  

Input : 4 
Output :106
Input :10 
Output :775 

Enneadecagonal number


Formula to find nth Enneadecagonal number :
 

\begin{math}  Ed_{n}=((17n^2)-15n)/2 \end{math}


 

C++
// C++ program to find
// nth Enneadecagonal number
#include <bits/stdc++.h>
using namespace std;

// Function to calculate 
// Enneadecagonal number
int nthEnneadecagonal(long int n)
{
    // Formula for finding
    // nth Enneadecagonal number
    return (17 * n * n - 15 * n) / 2;
}

// Drivers code
int main()
{
    long int n = 6;
    cout << n << "th Enneadecagonal number :" << nthEnneadecagonal(n);
    return 0;
}
C
// C program to find
// nth Enneadecagonal number
#include <stdio.h>

// Function to calculate 
// Enneadecagonal number
int nthEnneadecagonal(long int n)
{
    // Formula for finding
    // nth Enneadecagonal number
    return (17 * n * n - 15 * n) / 2;
}

// Drivers code
int main()
{
    long int n = 6;
    printf("%ldth Enneadecagonal number : %d",n,nthEnneadecagonal(n));
    return 0;
}

// This code is contributed by kothavvsaakash.
Java
// Java program to find
// nth Enneadecagonal number
import java.io.*;

class GFG {

    // Function to calculate 
    // Enneadecagonal number
    static int nthEnneadecagonal(int n)
    {
        
        // Formula for finding
        // nth Enneadecagonal number
        return (17 * n * n - 15 * n) / 2;
    }
    
    // Driver Code
    public static void main (String[] args)
    {
        
        int n = 6;
        System.out.print(n + "th Enneadecagonal number :");
    
        System.out.println( nthEnneadecagonal(n));
    }
}

// This code is contributed by m_kit.
Python3
# Program to find nth
# Enneadecagonal number

def nthEnneadecagonal(n) :
    
    # Formula to calculate nth
    # Enneadecagonal number
    return (17 * n * n - 15 * n) // 2

# Driver Code
if __name__ == '__main__' :
        
    n = 6
    print(n,"th Enneadecagonal number :"
                , nthEnneadecagonal(n))

# This code is contributed  by Ajit
C#
// C# program to find
// nth Enneadecagonal number
using System;

class GFG
{
    // Function to calculate 
    // Enneadecagonal number
    static int nthEnneadecagonal(int n)
    {
        
    // Formula for finding
    // nth Enneadecagonal number
    return (17 * n * n - 15 * n) / 2;
    }
    
    // Driver Code
    static public void Main ()
    {
    int n = 6;
    Console.Write(n + "th Enneadecagonal number :");
    
    Console.WriteLine( nthEnneadecagonal(n));
    }
}

// This code is contributed by aj_36 
PHP
<?php
// PHP program to find
// nth Enneadecagonal number

// Function to calculate 
// Enneadecagonal number
function nthEnneadecagonal($n)
{
    // Formula for finding
    // nth Enneadecagonal number
    return (17 * $n * $n - 
            15 * $n) / 2;
}

// Driver Code
$n = 6;
echo $n , "th Enneadecagonal number :" ,
                  nthEnneadecagonal($n);

// This code is contributed by ajit
?>
JavaScript
<script>
    // Javascript program to find nth Enneadecagonal number
    
    // Function to calculate 
    // Enneadecagonal number
    function nthEnneadecagonal(n)
    {
          
        // Formula for finding
        // nth Enneadecagonal number
        return (17 * n * n - 15 * n) / 2;
    }
    
    let n = 6;
    document.write(n + "th Enneadecagonal number :");

    document.write( nthEnneadecagonal(n));
    
</script>

Output:  

6th Enneadecagonal number :261


Time Complexity: O(1)
Auxiliary Space: O(1)


Next Article

Similar Reads