When building a Heap, is the structure of Heap unique?
Last Updated :
19 Jun, 2023
What is Heap?
A heap is a tree based data structure where the tree is a complete binary tree that maintains the property that either the children of a node are less than itself (max heap) or the children are greater than the node (min heap).
Properties of Heap:
Structural Property: This property states that it should be A Complete Binary Tree.
For example:
Max Heap
Ordering Property: The heap should follow either Max-heap or Min-heap Property.
- If it is Min-heap, the parent node should be less than the child node and
- In the case of a Max-heap, the parent node should be greater than the child node.
These rules should be followed at each level but the order of bottom child nodes can change we can understand it with an example(We are taking Max heap as an example):
Max Heap(Figure 1)
Max Heap(Figure 2)Is the structure of a Heap unique?
From the above two examples, we can see that the heap follows the Max-heap property. And here we can also see that in the first example the child nodes at the bottom level are (5 and 4), (6 and 3) but in the second nodes the child node at the bottom level are (4 and 5), (3 and 6). The place is changed of nodes at the bottom of the heap but it satisfies the condition of Max-heap.
- The order of child or leaf nodes is not fixed, So there will be 4! = 24 valid arrangements possible.
- So which arrangement we get is dependent on the order of insertions and removals or insertion and removal algorithms. Or in the case of making a heap from an array(O(n) case), the order of the array when we start.
There are actually two common types of heaps: min heaps and max heaps.
In a min heap, the parent nodes have values that are less than or equal to the values of their children. In a max heap, the parent nodes have values that are greater than or equal to the values of their children.
The structure of a heap is not unique, because there can be multiple valid heap structures for a given set of values. However, the property of being a min heap or a max heap is unique for a given set of values.
For example, consider the following set of values: [5, 8, 9, 10, 11, 13]. This set of values could be arranged in a min heap as follows:
5
/ \
8 10
/ \ \
9 11 13
This same set of values could also be arranged in a max heap as follows:
13
/ \
11 9
/ \ /
5 8 10
Both of these structures are valid heap structures, but one is a min heap and the other is a max heap.
Heaps are complete binary trees, which means that they are filled in level-order, with the exception that the last level may not be completely filled. This means that the tree is always balanced, which is one of the key properties that makes heaps efficient.
Heaps can be implemented using arrays. In this case, the children of the element at index i are at indices 2i+1 and 2i+2, and the parent of the element at index i is at index (i-1)/2 (assuming that the array is 0-indexed).
Heaps have a number of useful properties that make them useful in a variety of algorithms. For example:
The minimum (or maximum) element can be found in a constant number of steps (this is the root of the heap).
The heap property can be restored by "bubbling up" or "sinking down" an element that has been added or removed.
Heapsort, a sorting algorithm, can be implemented using a heap.
Conclusion:
From the above images, we can conclude while building a heap, the structure of the heap is not Unique.
Similar Reads
Heap Data Structure A Heap is a complete binary tree data structure that satisfies the heap property: for every node, the value of its children is greater than or equal to its own value. Heaps are usually used to implement priority queues, where the smallest (or largest) element is always at the root of the tree.Basics
2 min read
Introduction to Heap - Data Structure and Algorithm Tutorials A Heap is a special tree-based data structure with the following properties:It is a complete binary tree (all levels are fully filled except possibly the last, which is filled from left to right).It satisfies either the max-heap property (every parent node is greater than or equal to its children) o
15+ min read
Binary Heap A Binary Heap is a complete binary tree that stores data efficiently, allowing quick access to the maximum or minimum element, depending on the type of heap. It can either be a Min Heap or a Max Heap. In a Min Heap, the key at the root must be the smallest among all the keys in the heap, and this pr
13 min read
Advantages and Disadvantages of Heap Advantages of Heap Data StructureTime Efficient: Heaps have an average time complexity of O(log n) for inserting and deleting elements, making them efficient for large datasets. We can convert any array to a heap in O(n) time. The most important thing is, we can get the min or max in O(1) timeSpace
2 min read
Time Complexity of building a heap Consider the following algorithm for building a Heap of an input array A. A quick look over the above implementation suggests that the running time is O(n * lg(n)) since each call to Heapify costs O(lg(n)) and Build-Heap makes O(n) such calls. This upper bound, though correct, is not asymptotically
2 min read
Applications of Heap Data Structure Heap Data Structure is generally taught with Heapsort. Heapsort algorithm has limited uses because Quicksort is better in practice. Nevertheless, the Heap data structure itself is enormously used. Priority Queues: Heaps are commonly used to implement priority queues, where elements with higher prior
2 min read
Comparison between Heap and Tree What is Heap? A Heap is a special Tree-based data structure in which the tree is a complete binary tree. Types of Heap Data Structure: Generally, Heaps can be of two types: Max-Heap: In a Max-Heap the key present at the root node must be greatest among the keys present at all of its children. The sa
3 min read
When building a Heap, is the structure of Heap unique? What is Heap? A heap is a tree based data structure where the tree is a complete binary tree that maintains the property that either the children of a node are less than itself (max heap) or the children are greater than the node (min heap). Properties of Heap: Structural Property: This property sta
4 min read
Some other type of Heap
Easy problems on Heap
Check if a given Binary Tree is a HeapGiven a binary tree, check if it has heap property or not, Binary tree needs to fulfil the following two conditions for being a heap: It should be a complete tree (i.e. Every level of the tree, except possibly the last, is completely filled, and all nodes are as far left as possible.).Every nodeâs v
15+ min read
How to check if a given array represents a Binary Heap?Given an array, how to check if the given array represents a Binary Max-Heap.Examples: Input: arr[] = {90, 15, 10, 7, 12, 2} Output: True The given array represents below tree 90 / \ 15 10 / \ / 7 12 2 The tree follows max-heap property as every node is greater than all of its descendants. Input: ar
11 min read
Iterative HeapSortHeapSort is a comparison-based sorting technique where we first build Max Heap and then swap the root element with the last element (size times) and maintains the heap property each time to finally make it sorted. Examples: Input : 10 20 15 17 9 21 Output : 9 10 15 17 20 21 Input: 12 11 13 5 6 7 15
11 min read
Find k largest elements in an arrayGiven an array arr[] and an integer k, the task is to find k largest elements in the given array. Elements in the output array should be in decreasing order.Examples:Input: [1, 23, 12, 9, 30, 2, 50], k = 3Output: [50, 30, 23]Input: [11, 5, 12, 9, 44, 17, 2], k = 2Output: [44, 17]Table of Content[Nai
15+ min read
Kâth Smallest Element in Unsorted ArrayGiven an array arr[] of N distinct elements and a number K, where K is smaller than the size of the array. Find the K'th smallest element in the given array. Examples:Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 3 Output: 7Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 4 Output: 10 Table of Content[Naive Ap
15 min read
Height of a complete binary tree (or Heap) with N nodesConsider a Binary Heap of size N. We need to find the height of it. Examples: Input : N = 6 Output : 2 () / \ () () / \ / () () () Input : N = 9 Output : 3 () / \ () () / \ / \ () () () () / \ () ()Recommended PracticeHeight of HeapTry It! Let the size of the heap be N and the height be h. If we tak
3 min read
Heap Sort for decreasing order using min heapGiven an array of elements, sort the array in decreasing order using min heap. Examples: Input : arr[] = {5, 3, 10, 1}Output : arr[] = {10, 5, 3, 1}Input : arr[] = {1, 50, 100, 25}Output : arr[] = {100, 50, 25, 1}Prerequisite: Heap sort using min heap.Using Min Heap Implementation - O(n Log n) Time
11 min read